日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

(2) 求問題(1)中函數的值域. 查看更多

 

題目列表(包括答案和解析)

將奇函數的圖象關于原點(即(0,0))對稱這一性質進行拓廣,有下面的結論:
①函數y=f(x)滿足f(a+x)+f(a-x)=2b的充要條件是y=f(x)的圖象關于點(a,b)成中心對稱.
②函數y=f(x)滿足F(x)=f(x+a)-f(a)為奇函數的充要條件是y=f(x)的圖象關于點(a,f(a))成中心對稱(注:若a不屬于x的定義域時,則f(a)不存在).
利用上述結論完成下列各題:
(1)寫出函數f(x)=tanx的圖象的對稱中心的坐標,并加以證明.
(2)已知m(m≠-1)為實數,試問函數數學公式的圖象是否關于某一點成中心對稱?若是,求出對稱中心的坐標并說明理由;若不是,請說明理由.
(3)若函數數學公式的圖象關于點數學公式成中心對稱,求t的值.

查看答案和解析>>

將奇函數的圖象關于原點(即(0,0))對稱這一性質進行拓廣,有下面的結論:
①函數y=f(x)滿足f(a+x)+f(a-x)=2b的充要條件是y=f(x)的圖象關于點(a,b)成中心對稱.
②函數y=f(x)滿足F(x)=f(x+a)-f(a)為奇函數的充要條件是y=f(x)的圖象關于點(a,f(a))成中心對稱(注:若a不屬于x的定義域時,則f(a)不存在).
利用上述結論完成下列各題:
(1)寫出函數f(x)=tanx的圖象的對稱中心的坐標,并加以證明.
(2)已知m(m≠-1)為實數,試問函數f(x)=
x+m
x-1
的圖象是否關于某一點成中心對稱?若是,求出對稱中心的坐標并說明理由;若不是,請說明理由.
(3)若函數f(x)=(x-
2
3
)(|x+t|+|x-3|)-4
的圖象關于點(
2
3
,f(
2
3
))
成中心對稱,求t的值.

查看答案和解析>>

將奇函數的圖象關于原點(即(0,0))對稱這一性質進行拓廣,有下面的結論:
①函數y=f(x)滿足f(a+x)+f(a-x)=2b的充要條件是y=f(x)的圖象關于點(a,b)成中心對稱.
②函數y=f(x)滿足F(x)=f(x+a)-f(a)為奇函數的充要條件是y=f(x)的圖象關于點(a,f(a))成中心對稱(注:若a不屬于x的定義域時,則f(a)不存在).
利用上述結論完成下列各題:
(1)寫出函數f(x)=tanx的圖象的對稱中心的坐標,并加以證明.
(2)已知m(m≠-1)為實數,試問函數的圖象是否關于某一點成中心對稱?若是,求出對稱中心的坐標并說明理由;若不是,請說明理由.
(3)若函數的圖象關于點成中心對稱,求t的值.

查看答案和解析>>

已知函數的圖像上兩相鄰最高點的坐標分別為.(Ⅰ)求的值;(Ⅱ)在中,分別是角的對邊,且的取值范圍.

【解析】本試題主要考查了三角函數的圖像與性質的綜合運用。

第一問中,利用所以由題意知:;第二問中,,即,又

,解得

所以

結合正弦定理和三角函數值域得到。

解:(Ⅰ)

所以由題意知:

(Ⅱ),即,又

,解得

所以

因為,所以,所以

 

查看答案和解析>>

已知函數f(x)=
4x
x2+a

在探究a=1時,函數f(x)在區間[0,+∞)上的最大值問題.為此,我們列表如下
y 0 0.1 0.2 0.5 0.8 1 1.2 1.5 1.8 2 4 6
y 0 0.396 0.769 1.6 1.951 2 1.967 1.846 1.698 1.6 0.941 0.649
請觀察表中y值隨x值變化的特點,解答以下兩個問題.
(1)寫出函數f(x)在[0,+∞)(a=1)上的單調區間;指出在各個區間上的單調性,并對其中一個區間的單調性用定義加以證明.
(2)寫出函數f(x)(a=1)的定義域,并求f(x)值域.

查看答案和解析>>

 

一、選擇題:

(1)D     (2)B     (3)C     (4)B     (5)B     (6)A   

(7)C     (8)A     (9)D    (10)B     (11)C    (12)B

 

二、填空題:

(13)2               (14)  (15)200  (16)②③ 

 

三、解答題

17.   (1) 故函數的定義域是(-1,1). ………… 2分

(2)由,得(R),所以,      ……………  5分

所求反函數為( R).                …………………  7分

(3) ==-,所以是奇函數.………  12分

 

18. (1)設,則.        …………………  1分

由題設可得解得      ………………… 5分

所以.                                …………………  6分

(2) ,. ……  8分

列表:

 

 

 

                                                     …………………  11分

由表可得:函數的單調遞增區間為,       ………………  12分

19.(1)證明:設,且

,且.                    …………………  2分

上是增函數,∴.        …………………  4分

為奇函數,∴,                      

, 即上也是增函數.         ………………  6分

(2)∵函數上是增函數,且在R上是奇函數,

上是增函數.                       ……………………  7分

于是

 

.        …………  10分

∵當時,的最大值為

∴當時,不等式恒成立.                         ………………  12分

 

20. ∵AB=x, ∴AD=12-x.                                   ………………1分

,于是.         ………………3分

由勾股定理得   整理得    …………5分

因此的面積 .  ……7分

  得                                ………………8分

.                         ………………10分

當且僅當時,即當時,S有最大值  ……11分

答:當時,的面積有最大值             ………………12分

 

21. (1) h (x)                            …………………5分

   (2) 當x≠1時, h(x)= =x-1++2,                       ………………6分

      若 x > 1時, 則 h (x)≥4,其中等號當 x = 2時成立               ………………8分

若x<1時, 則h (x) ≤ 0,其中等號當 x = 0時成立               ………………10分

∴函數 h (x)的值域是 (-∞,0 ] ∪ { 1 } ∪ [ 4 ,+∞)             ………………12分

 

22. (1)

切線PQ的方程             ………2分

   (2)令y=0得                           ………4分

 

解得 .                         ………6分

又0<t<6, ∴4<t<6,                                            ………7分

g (t)在(m, n)上單調遞減,故(m, n)              ………8分

(3)當在(0,4)上單調遞增,

 

∴P的橫坐標的取值范圍為.                               ………14分

 

 


同步練習冊答案
主站蜘蛛池模板: 久久99精品久久久久久久青青日本 | 精品视频在线免费观看 | 欧美一级在线观看 | jizz18女人高潮 | 成人精品在线 | 99综合| 日韩激情综合 | 欧美视频一区二区三区 | 亚洲网站久久 | 中文无码久久精品 | 第一福利丝瓜av导航 | 国产一区二区三区四区视频 | 日韩av免费看 | 国产精品成人在线观看 | 免费观看一级特黄欧美大片 | 综合天天| 午夜亚洲一区 | 国产一区二区三区在线免费观看 | 羞羞网站在线观看入口免费 | 亚洲网站色| 羞羞的网站在线观看 | 黄色av电影在线 | 成人欧美在线 | 午夜视频网站 | 黑人精品xxx一区一二区 | 亚洲精品一区二区三区蜜桃久 | 亚洲天天做 | 日本免费www| 久草视频在线看 | 欧美黄色大片网站 | 国变精品美女久久久久av爽 | 日韩欧美综合 | 久久亚洲免费 | 亚洲视频中文字幕 | 久久国产精品成人免费观看的软件 | 久久精品无码一区二区日韩av | avhd101在线成人播放 | 国产精品久久久久久久久久久久久久 | 成年人视频在线免费观看 | 麻豆专区一区二区三区四区五区 | 91亚洲视频在线观看 |