日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

第1小題滿分4分, 第2小題滿分6分, 第3小題滿分6分如圖,P―ABC是底面邊長為1的正三棱錐,D.E.F分別為棱長PA.PB.PC上的點, 截面DEF∥底面ABC, 且棱臺DEF―ABC與棱錐P―ABC的棱長和相等.(棱長和是指多面體中所有棱的長度之和)(1)證明:P―ABC為正四面體, 查看更多

 

題目列表(包括答案和解析)

. (本題滿分16分,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分)

已知公差大于零的等差數列的前項和為,且滿足

(1)求數列的通項公式;

(2)若數列是等差數列,且,求非零常數

(3)若(2)中的的前項和為,求證:

 

查看答案和解析>>

. (本題滿分16分,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分)
已知公差大于零的等差數列的前項和為,且滿足
(1)求數列的通項公式;
(2)若數列是等差數列,且,求非零常數
(3)若(2)中的的前項和為,求證:

查看答案和解析>>

(本題滿分16分,第1小題4分,第2小題6分,第3小題6分)

設橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1F2,線段OF1OF2的中點分別為B1B2,且△AB1B2是面積為的直角三角形.過1作直線l交橢圓于PQ兩點.

(1) 求該橢圓的標準方程;

(2) 若,求直線l的方程;

(3) 設直線l與圓Ox2+y2=8相交于MN兩點,令|MN|的長度為t,若t,求△B2PQ的面積的取值范圍.

 

查看答案和解析>>

(本題滿分16分,第1小題4分,第2小題6分,第3小題6分)
設橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1F2,線段OF1OF2的中點分別為B1B2,且△AB1B2是面積為的直角三角形.過1作直線l交橢圓于PQ兩點.
(1) 求該橢圓的標準方程;
(2) 若,求直線l的方程;
(3) 設直線l與圓Ox2+y2=8相交于MN兩點,令|MN|的長度為t,若t,求△B2PQ的面積的取值范圍.

查看答案和解析>>

(本題滿分16分,第1小題 4分,第2小題4分,第3小題8分)

   已知函數在點處的切線方程為

⑴求函數的解析式;

⑵若對于區間上任意兩個自變量的值都有,求實數的最小值;

⑶若過點可作曲線的三條切線,求實數的取值范圍.

查看答案和解析>>

 

一、填空題(本大題滿分48分,每小題4分)

(1)3      (2)(5,0)      (3){1,2,5}           (4)2      (5)(-2,0)∪(2,5]   

(6)(5,4)    (7)6       (8)(x-2)2+(y+3)2=5    (9)    (10)a>0且b≤0 

(11)用代數的方法研究圖形的幾何性質              (12)①、④

二、選擇題(本大題滿分16分,每小題4分)

(13)B   (14)C   (15)A  (16)B

三、解答題(本大題滿分86分)

(17)【解】由題意得 z1==2+3i,

  于是==,=.

  <,得a2-8a+7<0,1<a<7.

(18)【解】由題意得xy+x2=8,   ∴y==(0<x<4).

  于定, 框架用料長度為 l=2x+2y+2()=(+x+≥4.

  當(+x=,即x=8-4時等號成立.

  此時, x≈2.343,y=2≈2.828.    故當x為2.343m,y為2.828m時, 用料最省.

(19)【解】(1)2-≥0, 得≥0, x<-1或x≥1      即A=(-∞,-1)∪[1,+ ∞)

(2) 由(xa-1)(2ax)>0, 得(xa-1)(x2a)<0.

a<1,∴a+1>2a, ∴B=(2a,a+1).

∵BA, ∴2 a≥1或a +1≤-1, 即aa≤-2, 而a <1,

a <1或a≤-2, 故當BA時, 實數a的取值范圍是 (-∞,-2)∪[,1]   

                  

(20)【解】(1) 解方程   y=x         得    x1=-4,    x2=8

                                       y=x2-4           y1=-2,    y2=4

   即A(-4,-2),B(8,4), 從而AB的中點為M(2,1).

   由kAB==,直線AB的垂直平分線方程y-1=x-2).

   令y=-5, 得x=5, ∴Q(5,-5)

  (2) 直線OQ的方程為x+y=0, 設P(x, x2-4).

   ∵點P到直線OQ的距離d==,

   ,∴SΔOPQ==.

  ∵P為拋物線上位于線段AB下方的點, 且P不在直線OQ上,

  ∴-4≤x<4-4或4-4<x≤8.  ∵函數y=x2+8x-32在區間[-4,8] 上單調遞增,

  ∴當x=8時, ΔOPQ的面積取到最大值30.

(21)【證明】(1) ∵棱臺DEF―ABC與棱錐P―ABC的棱長和相等,

   ∴DE+EF+FD=PD+OE+PF.   又∵截面DEF∥底面ABC,

   ∴DE=EF=FD=PD=OE=PF,∠DPE=∠EPF=∠FPD=60°, ∴P―ABC是正四面體.

 【解】(2)取BC的中點M,連拉PM,DM.AM.

   ∵BC⊥PM,BC⊥AM, ∴BC⊥平面PAM,BC⊥DM,

   則∠DMA為二面角D―BC―A的平面角.    由(1)知,P―ABC的各棱長均為1,

   ∴PM=AM=,由D是PA的中點,  得sin∠DMA=,∴∠DMA=arcsin.

(3)存在滿足條件的直平行六面體.  棱臺DEF―ABC的棱長和為定值6,體積為V.

  設直平行六面體的棱長均為,底面相鄰兩邊夾角為α,

  則該六面體棱長和為6, 體積為sinα=V.

  ∵正四面體P―ABC的體積是,∴0<V<,0<8V<1.可知α=arcsim(8V)

故構造棱長均為,底面相鄰兩邊夾角為arcsim(8V)的直平行六面體即滿足要求.

(22)【解】(1) a1=2=9,由S3=a1+a3)=162,得a3=3=99.

-y2=1

,得

x=90

x+y=99

y=9

  

 

 

 

  ∴點P3的坐標可以為(3,3).

(2)對每個自然數k,1≤k≤n,由題意2=(k-1)d,及

y=2pxk

,得x+2pxk=(k-1)d

x+y=(k-1)d

即(xk+p)2=p2+(k-1)d,

   ∴(x1+p)2, (x2+p)2, …,(xn+p)2是首項為p2,公差為d的等差數列.

   (3) 【解法一】原點O到二次曲線C:a>b>0)上各點的最小距離為b,最大距離為a.

    ∵a1=2=a2, ∴d<0,且an=2=a2+(n-1)d≥b2,

    ∴≤d<0. ∵n≥3,>0

    ∴Sn=na2+d在[,0)上遞增,

  故Sn的最小值為na2+?=.

  【解法二】對每個自然數k(2≤k≤n),

        

x+y=a2+(k-1)d

,解得y=

+=1

     ∵0< y≤b2,得≤d<0     ∴≤d<0    以下與解法一相同.


同步練習冊答案
主站蜘蛛池模板: 国产精品91色 | 国产成人在线一区二区 | 日韩在线观看一区 | 簧片av | 午夜激情视频在线观看 | 国产精品2019| 欧美精品一区二区三区在线 | 欧美日韩视频在线观看免费 | 久久va| 一区二区中文字幕在线观看 | 日韩精品免费观看 | 日本精品一区 | 久久av一区二区 | 欧美精品三区 | 国产一国产寡妇一级毛片 | 极品视频在线 | 好色视频在线观看 | 久久色网站 | 日韩午夜激情 | 在线第一页 | 欧美极品视频 | 国产拍拍拍拍拍拍拍拍拍拍拍拍拍 | 超碰人人爱 | 高清一区二区三区 | 精品国产一区二区三区在线观看 | 免费国产一区二区 | 中文字幕一区二区三区四区五区 | 色视频免费 | 国产精品久久久久aaaa九色 | 中文视频在线 | 日韩中文字幕视频 | 亚洲欧美一区二区三区在线 | 九九天堂 | 日韩不卡在线 | 亚洲一区二区三区国产 | xxxx性欧美 | 亚洲精品乱码久久久久久不卡 | 高清色| 伊人夜夜躁av伊人久久 | 国产精品三级久久久久久电影 | 国产免费视频 |