(本題滿分16分,第1小題4分,第2小題6分,第3小題6分)
設(shè)橢圓的中心為原點(diǎn)O,長(zhǎng)軸在x軸上,上頂點(diǎn)為A,左、右焦點(diǎn)分別為F1、F2,線段OF1、OF2的中點(diǎn)分別為B1、B2,且△AB1B2是面積為的直角三角形.過(guò)B1作直線l交橢圓于P、Q兩點(diǎn).
(1) 求該橢圓的標(biāo)準(zhǔn)方程;
(2) 若,求直線l的方程;
(3) 設(shè)直線l與圓O:x2+y2=8相交于M、N兩點(diǎn),令|MN|的長(zhǎng)度為t,若t∈,求△B2PQ的面積
的取值范圍.
(1);(2)x+2y+2=0和x–2y+2=0;(3)
。
【解析】
試題分析:(1)設(shè)所求橢圓的標(biāo)準(zhǔn)方程為,右焦點(diǎn)為
.
因△AB1B2是直角三角形,又|AB1|=|AB2|,故∠B1AB2=90º,得c=2b…………1分
在Rt△AB1B2中,,從而
.………………3分
因此所求橢圓的標(biāo)準(zhǔn)方程為: …………………………………………4分
(2)由(1)知,由題意知直線的傾斜角不為0,故可設(shè)直線的方程為:
,代入橢圓方程得
,…………………………6分
設(shè)P(x1, y1)、Q(x2,
y2),則y1、y2是上面方程的兩根,因此,
,又
,所以
………………………………8分
由,得
=0,即
,解得
;
所以滿足條件的直線有兩條,其方程分別為:x+2y+2=0和x–2y+2=0……………………10分
(3) 當(dāng)斜率不存在時(shí),直線,此時(shí)
,
………………11分
當(dāng)斜率存在時(shí),設(shè)直線,則圓心
到直線的距離
,
因此t=,得
………………………………………13分
聯(lián)立方程組:得
,由韋達(dá)定理知,
,所以
,
因此.
設(shè),所以
,所以
…15分
綜上所述:△B2PQ的面積……………………………………………16分
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì);圓的簡(jiǎn)單性質(zhì);直線與橢圓的綜合應(yīng)用。
點(diǎn)評(píng):直線與圓錐曲線聯(lián)系在一起的綜合題在高考中多以高檔題、壓軸題出現(xiàn),主要涉及位置關(guān)系的判定,弦長(zhǎng)問(wèn)題、最值問(wèn)題、對(duì)稱問(wèn)題、軌跡問(wèn)題等.突出考查了數(shù)形結(jié)合、分類討論、函數(shù)與方程、等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分16分,第一小題8分;第二小題8分)
已知是
軸正方向的單位向量,設(shè)
=
,
=
,且滿足
.
求點(diǎn)的軌跡方程;
過(guò)點(diǎn)的直線
交上述軌跡于
兩點(diǎn),且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市高三第三次月考試題文科數(shù)學(xué) 題型:解答題
. (本題滿分16分,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分)
已知公差大于零的等差數(shù)列的前
項(xiàng)和為
,且滿足
,
,
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列是等差數(shù)列,且
,求非零常數(shù)
;
(3)若(2)中的的前
項(xiàng)和為
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:上海市長(zhǎng)寧區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文 題型:解答題
(本題滿分16分,第(1)小題4分,第(2)小題6分,第(2)小題6分)
在平行四邊形中,已知過(guò)點(diǎn)
的直線與線段
分別相交于點(diǎn)
。若
。
(1)求證:與
的關(guān)系為
;
(2)設(shè),定義在
上的偶函數(shù)
,當(dāng)
時(shí)
,且函數(shù)
圖象關(guān)于直線
對(duì)稱,求證:
,并求
時(shí)的解析式;
(3)在(2)的條件下,不等式在
上恒成立,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(理) 題型:解答題
(本題滿分16分;第(1)小題5分,第(2)小題5分,第(3)小題6分)
設(shè)、
為坐標(biāo)平面
上的點(diǎn),直線
(
為坐標(biāo)原點(diǎn))與拋物線
交于點(diǎn)
(異于
).
(1)
若對(duì)任意,點(diǎn)
在拋物線
上,試問(wèn)當(dāng)
為何值時(shí),點(diǎn)
在某一圓上,并求出該圓方程
;
(2)
若點(diǎn)在橢圓
上,試問(wèn):點(diǎn)
能否在某一雙曲線上,若能,求出該雙曲線方程,若不能,說(shuō)明理由;
(3)
對(duì)(1)中點(diǎn)所在圓方程
,設(shè)
、
是圓
上兩點(diǎn),且滿足
,試問(wèn):是否存在一個(gè)定圓
,使直線
恒與圓
相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題
(本題滿分16分,第一小題8分;第二小題8分)
已知是
軸正方向的單位向量,設(shè)
=
,
=
,且滿足
.
(1)
求點(diǎn)的軌跡方程;
(2)
過(guò)點(diǎn)的直線
交上述軌跡于
兩點(diǎn),且
,求直線
的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com