日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

得?.解得或?即男生有15名.女生有36-15=21名.或男生有21名.女生有36-21=15名.總之.男女生相差6名.三.作業: 查看更多

 

題目列表(包括答案和解析)

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

 

【解析】解法一:如圖,以點A為原點建立空間直角坐標系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得,于是,所以

(2) ,設平面PCD的法向量,

,即.不防設,可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設點E的坐標為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

若下列方程:,,,至少有一個方程有實根,試求實數的取值范圍.

解:設三個方程均無實根,則有

解得,即

所以當時,三個方程至少有一個方程有實根.

 

查看答案和解析>>

已知,函數

(1)當時,求函數在點(1,)的切線方程;

(2)求函數在[-1,1]的極值;

(3)若在上至少存在一個實數x0,使>g(xo)成立,求正實數的取值范圍。

【解析】本試題中導數在研究函數中的運用。(1)中,那么當時,  又    所以函數在點(1,)的切線方程為;(2)中令   有 

對a分類討論,和得到極值。(3)中,設,,依題意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  當時,  又    

∴  函數在點(1,)的切線方程為 --------4分

(Ⅱ)令   有 

①         當

(-1,0)

0

(0,

,1)

+

0

0

+

極大值

極小值

的極大值是,極小值是

②         當時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

綜上所述   時,極大值為,無極小值

時  極大值是,極小值是        ----------8分

(Ⅲ)設,

求導,得

,    

在區間上為增函數,則

依題意,只需,即 

解得  (舍去)

則正實數的取值范圍是(,

 

查看答案和解析>>

已知函數

(Ⅰ)求函數的單調區間;

(Ⅱ)設,若對任意,不等式 恒成立,求實數的取值范圍.

【解析】第一問利用的定義域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數的單調遞增區間是(1,3);單調遞減區間是

第二問中,若對任意不等式恒成立,問題等價于只需研究最值即可。

解: (I)的定義域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數的單調遞增區間是(1,3);單調遞減區間是     ........4分

(II)若對任意不等式恒成立,

問題等價于,                   .........5分

由(I)可知,在上,x=1是函數極小值點,這個極小值是唯一的極值點,

故也是最小值點,所以;            ............6分

當b<1時,;

時,;

當b>2時,;             ............8分

問題等價于 ........11分

解得b<1 或 或    即,所以實數b的取值范圍是 

 

查看答案和解析>>

已知函數其中為自然對數的底數, .(Ⅰ)設,求函數的最值;(Ⅱ)若對于任意的,都有成立,求的取值范圍.

【解析】第一問中,當時,,.結合表格和導數的知識判定單調性和極值,進而得到最值。

第二問中,∵,      

∴原不等式等價于:,

, 亦即

分離參數的思想求解參數的范圍

解:(Ⅰ)當時,

上變化時,,的變化情況如下表:

 

 

1/e

時,

(Ⅱ)∵,,      

∴原不等式等價于:,

, 亦即

∴對于任意的,原不等式恒成立,等價于恒成立,

∵對于任意的時, (當且僅當時取等號).

∴只需,即,解之得.

因此,的取值范圍是

 

查看答案和解析>>


同步練習冊答案
主站蜘蛛池模板: 免费的黄色毛片 | 国产伦精品一区二区三区四区视频 | 国产成人小视频 | 国产欧美亚洲精品 | 亚洲成人综合在线 | 91爱爱| 国产精品成人一区二区 | 99久久99久久精品免费看蜜桃 | 精品久久久久久久久久久院品网 | 国产一区二区三区免费 | 超碰999 | 精品日韩欧美一区二区三区 | 91高清视频在线观看 | 国产精品久久久久aaaa九色 | 精品999www | 欧美精品久久久久久久久老牛影院 | 欧美精品一区二区在线观看 | 一区免费观看 | 日日躁夜夜躁白天躁晚上躁91 | 玖草在线视频 | 久久精品国产亚洲a∨蜜臀 性视频网站免费 | 久久国产综合 | 精品国产一区二区三区在线观看 | 日本一区二区精品视频 | 天堂中文av在线 | 国产在线国偷精品产拍免费yy | 成人午夜在线视频 | 成人精品国产免费网站 | 亚洲免费人成在线视频观看 | 自拍小电影 | 日本福利一区二区 | 欧美激情一区二区三区在线观看 | 日韩一区二区福利视频 | 日韩黄视频 | 日韩影院在线 | 97国产在线视频 | 蜜桃av一区二区三区 | 久久精品一区二区 | 久久精品国产久精国产 | 日韩午夜av| 国产精品高潮呻吟久久a |