題目列表(包括答案和解析)
已知命題“橢圓
的焦點在
軸上”;
命題在
上單調遞增,若“
”為假,求
的取值范圍.
【解析】主要考查了命題中復合命題的真值問題的判定,以及橢圓,導數的運用。
首先求解若p為真,則m2.
若q為真,=
0在R上恒成立。
所以 所以
而要是為假,則
,這樣就可以得到了。
若p為真,則m2.
2分
若q為真,=
0在R上恒成立。
所以 所以
3分
若為假,所以
為真 2分
所以m2且
, 所以
已知是等差數列,其前n項和為
,
是等比數列,且
(I)求數列與
的通項公式;
(II)記求證:
,
。
【考點定位】本小題主要考查等差數列與等比數列的概念、通項公式、前n項和公式、數列求和等基礎知識.考查化歸與轉化的思想方法.考查運算能力、推理論證能力.
過拋物線的對稱軸上的定點
,作直線
與拋物線相交于
兩點.
(I)試證明兩點的縱坐標之積為定值;
(II)若點是定直線
上的任一點,試探索三條直線
的斜率之間的關系,并給出證明.
【解析】本題主要考查拋物線與直線的位置關系以及發現問題和解決問題的能力.
(1)中證明:設下證之:設直線AB的方程為: x=ty+m與y2=2px聯立得消去x得y2=2pty-2pm=0,由韋達定理得
(2)中:因為三條直線AN,MN,BN的斜率成等差數列,下證之
設點N(-m,n),則直線AN的斜率KAN=,直線BN的斜率KBN=
KAN+KBN=+
本題主要考查拋物線與直線的位置關系以及發現問題和解決問題的能力.
已知函數f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令
.
當時
單調遞減;當
時
單調遞增,故當
時,
取最小值
于是對一切恒成立,當且僅當
. ①
令則
當時,
單調遞增;當
時,
單調遞減.
故當時,
取最大值
.因此,當且僅當
時,①式成立.
綜上所述,的取值集合為
.
(Ⅱ)由題意知,令
則
令,則
.當
時,
單調遞減;當
時,
單調遞增.故當
,
即
從而,
又
所以因為函數
在區間
上的圖像是連續不斷的一條曲線,所以存在
使
即
成立.
【點評】本題考查利用導函數研究函數單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數與方程思想等數學方法.第一問利用導函數法求出取最小值
對一切x∈R,f(x)
1恒成立轉化為
從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數,研究這個函數的性質進行分析判斷.
如圖6,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(Ⅰ)證明:BD⊥PC;
(Ⅱ)若AD=4,BC=2,直線PD與平面PAC所成的角為30°,求四棱錐P-ABCD的體積.
【解析】(Ⅰ)因為
又是平面PAC內的兩條相較直線,所以BD
平面PAC,
而平面PAC,所以
.
(Ⅱ)設AC和BD相交于點O,連接PO,由(Ⅰ)知,BD平面PAC,
所以是直線PD和平面PAC所成的角,從而
.
由BD平面PAC,
平面PAC,知
.在
中,由
,得PD=2OD.因為四邊形ABCD為等腰梯形,
,所以
均為等腰直角三角形,從而梯形ABCD的高為
于是梯形ABCD面積
在等腰三角形AOD中,
所以
故四棱錐的體積為
.
【點評】本題考查空間直線垂直關系的證明,考查空間角的應用,及幾何體體積計算.第一問只要證明BD平面PAC即可,第二問由(Ⅰ)知,BD
平面PAC,所以
是直線PD和平面PAC所成的角,然后算出梯形的面積和棱錐的高,由
算得體積
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com