日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

點是橢圓短軸的一個端點.是橢圓的一個焦點.的延長線與橢圓交于點.直線與橢圓相交于點..與相交于點(與.不重合). 查看更多

 

題目列表(包括答案和解析)

橢圓滿足這樣的光學性質:從橢圓的一個焦點發射光線,經橢圓反射后,反射光線經過橢圓的另一個焦點.現在設有一個水平放置的橢圓形臺球盤,滿足方程:
x2
16
+
y2
9
=1
,點A、B是它的兩個焦點,當靜止的小球放在點A處,從點A沿直線出發,經橢圓壁(非橢圓長軸端點)反彈后,回到點A時,小球經過的最短路程是(  )
A、20B、18
C、16D、以上均有可能

查看答案和解析>>

橢圓對稱軸在坐標軸上,短軸的一個端點與兩個焦點構成一個正三角形,焦點到橢圓上的點的最短距離是
3
,求這個橢圓方程.

查看答案和解析>>

橢圓的短軸的一個端點到一個焦點的距離為5,焦點到橢圓中心的距離為3,則橢圓的標準方程是(  )
A、
x2
16
+
y2
9
=1或
x2
9
+
y2
16
=1
B、
x2
25
+
y2
9
=1或
y2
25
+
x2
9
=1
C、
x2
25
+
y2
16
=1或
y2
25
+
x2
16
=1
D、橢圓的方程無法確定

查看答案和解析>>

橢圓的兩個焦點為F1、F2,短軸的一個端點為A,且三角形F1AF2是頂角為120°的等腰三角形形,則此橢圓的離心率為
 

查看答案和解析>>

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點分別為F1(-c,0),F2(c,0),M是橢圓短軸的一個端點,且滿足
F1M
F2M
=0,點N( 0,3 )到橢圓上的點的最遠距離為5
2

(1)求橢圓C的方程
(2)設斜率為k(k≠0)的直線l與橢圓C相交于不同的兩點A、B,Q為AB的中點,P(0,-
3
3
)
;問A、B兩點能否關于過點P、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.

查看答案和解析>>

 

一、

1.C      2.A      3.D      4.C      5.A      6.B       7.A      8.C      9.D      10.C

11.D    12.B

1~5略

6.

7.解:

      

      

其展開式中含的項是:,系數等于

8.解:根據題意:

9.解:,橢圓離心率為

10.解:依腰意作出圖形.取中點,連接,則,不妨設四面體棱長為2,則是等腰三角形,必是銳角,就是所成的角,

11.解:已知兩腰所在直線斜率為1,,設底邊所在直線斜率為,已知底角相等,由到角公式得:

       ,解得

       由于等腰三角底邊過點(,0)則只能取

12.解:如圖,正四面體中,

      

中心,連,此四面體內切球與外接球具有共同球心必在上,并且等于內切球半徑,等于外接球半徑.記面積為,則

,從而

二、

13..解:共線

14..解:,曲線在(1,0)處的切線與直線垂直,則的傾角是

15.曲線     ①,化作標準形式為,表示橢圓,由于對稱性.取焦點,過且傾角是135°的弦所在直線方程為:,即②,聯立式①與式②.消去y,得:,由弦長公式得:

16.充要條件①:底面是正三角形,頂點在底面的射影恰是底面的中心.

充要條件②:底面是正三角形.且三條側棱長相等,

充要條件③:底面是正三角形,且三個側面與底面所成角相等.

再如:底面是正三角形.且三條側棱與底面所成角相等;三條側棱長相等,且三個側面與底面所成角相等;三個側面與底面所成角相等,三個側面兩兩所成二面角相等.

三、

17.解:,則.由正弦定理得

      

      

      

18.(1)證:已知是正三棱柱,取中點中點,連,則兩兩垂直,以軸建立空間直角坐標系,又已知

,則,又因相交,故

(2)解:由(1)知,是面的一個法向量.

             

,設是面的一個法向量,則①,②,取,聯立式①、②解得,則

              二面角是銳二面角,記其大小為.則

             

二面角的大小,亦可用傳統方法解(略).

19.解:已知各投保學生是否出險相互獨立,且每個投保學生在一年內出險的概率都是,記投保的5000個學生中出險的人數為,則(5000,0.004)即服從二項分布.

(1)記“保險公司在學平險險種中一年內支付賠償金至少5000元”為事件A,則

             

             

(2)該保險公司學平險除種總收入為元=25萬元,支出成本8萬元,支付賠償金5000元=0.5萬元,盈利萬元.

~知,

進而萬元.

故該保險公司在學平險險種上盈利的期望是7萬元.

20.解(1):由,即

              ,而

由表可知,上分別是增函數,在上分別是減函數.

.   

(2)時,等價于,記

,因

上是減函數,,故

時,就是,顯然成立,綜上可得的取值范圍是:

22.解:(1)由條件可知橢圓的方程是:

             

                ①,直線的方程是            ②,

聯立式①、②消去并整理得,由此出發時,是等比數列,

(2)由(1)可知,.當時,

      

      

       是遞減數列

       對恒成立

       時,是遞減數列.

21.解(1):,由解得函數定義域呈

              ,由解得,列表如下:

0

0

極大

極小

              解得,進而求得中點

              己知在直線上,則

       (2)

,則,點到直線的距離

,由于直線與線段相交于,則,則

,則

其次,,同理求得的中離:

,即,由

時,

,當時,.注意到,由對稱性,時仍有

,進而

故四邊形的面積:

時,

 

 


同步練習冊答案
主站蜘蛛池模板: 人人插人人 | 日韩午夜一级片 | av一区二区三区四区 | 米奇av| 日本精品久久久一区二区三区 | 福利视频网址 | 国产精品久久久久久久久久久久久久久久 | 视频在线一区 | 亚洲欧美v国产一区二区 | 欧美精品一区二区在线观看 | 国产精品99久久久久久大便 | 欧美日韩一区二区视频在线观看 | 97久久精品人人做人人爽50路 | 欧美激情一区二区三区在线观看 | 久久久久久电影 | 中文字幕乱码一区二区三区 | 国产女人和拘做受视频 | 国产精品美女一区二区三区 | 日本在线三级 | 精品国产乱码久久久久久久 | 国产精品国产a | 欧美天堂在线观看 | 国产精品久久久久久久久久久久冷 | 亚洲午夜精品一区二区三区他趣 | 日本亚洲国产一区二区三区 | 久久久www成人免费精品 | 国产精品一区二区三区在线 | 久久国产成人午夜av影院宅 | 日韩精品免费在线视频 | 久久久久久久久久久久久久久久久久久 | 伊人欧美视频 | 精品一区二区三区免费视频 | 视频一区二区三区中文字幕 | 蜜桃av噜噜一区二区三区 | 久久99精品久久久久久园产越南 | 精品久久久久久久久久久久久久 | 午夜免费视频 | 久久久久久久久久久成人 | 亚洲国产精久久久久久久 | 亚洲国产成人在线视频 | 成人激情视频在线播放 |