日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

關于學平險.學生自愿投保.每個投保學生每年交納保費50元.如果學生發生意外傷害或符合賠償的疾病.可獲得5000元賠償.假定各投保學生是否出險相互獨立.并且每個投保學生在一年內出險的概率均是0.004(說明:此處對實際保險問題作了簡化處理).假定一年內5000人投保.(1)求保險公司在學平險險種中.一年內支付賠償金至少5000元的概率,(2)設保險公司辦理學平險除賠償金之外的成本為8萬元.求該公司在學平險險種上盈利的期望. 查看更多

 

題目列表(包括答案和解析)

已知平面向量
a
=(
3
,-1)
b
=(
1
2
3
2
)

(1)證明:
a
b

(2)若存在實數k和t,滿足
x
=(t+2)
a
+(t2-t-5)
b
y
=-k
a
+4
b
,且
x
y
,試求出k關于t的關系式,即k=f(t);
(3)根據(2)的結論,試求出函數k=f(t)在t∈(-2,2)上的最小值.

查看答案和解析>>

設函數f(x)=(x2+ax+b)ex(x∈R).
(1)若a=2,b=-2,求函數f(x)的極值;
(2)若x=1是函數f(x)的一個極值點,試求出a關于b的關系式(即用a表示b),并確定f(x)的單調區間;(提示:應注意對a的取值范圍進行討論)
(3)在(2)的條件下,設a>0,函數g(x)=(a2+14)ex+4.若存在ξ1,ξ2∈[0,4]使得|f(ξ1)-g(ξ2)|<1成立,求a的取值范圍.

查看答案和解析>>

已知平面向量數學公式數學公式
(1)證明:數學公式
(2)若存在實數k和t,滿足數學公式數學公式,且數學公式,試求出k關于t的關系式,即k=f(t);
(3)根據(2)的結論,試求出函數k=f(t)在t∈(-2,2)上的最小值.

查看答案和解析>>

設函數f(x)=(x2+ax+b)ex(x∈R).
(1)若a=2,b=-2,求函數f(x)的極值;
(2)若x=1是函數f(x)的一個極值點,試求出a關于b的關系式(即用a表示b),并確定f(x)的單調區間;(提示:應注意對a的取值范圍進行討論)
(3)在(2)的條件下,設a>0,函數g(x)=(a2+14)ex+4.若存在ξ1,ξ2∈[0,4]使得|f(ξ1)-g(ξ2)|<1成立,求a的取值范圍.

查看答案和解析>>

已知平面向量
a
=(
3
,-1)
b
=(
1
2
3
2
)

(1)證明:
a
b

(2)若存在實數k和t,滿足
x
=(t+2)
a
+(t2-t-5)
b
y
=-k
a
+4
b
,且
x
y
,試求出k關于t的關系式,即k=f(t);
(3)根據(2)的結論,試求出函數k=f(t)在t∈(-2,2)上的最小值.

查看答案和解析>>

 

一、

1.C      2.A      3.D      4.C      5.A      6.B       7.A      8.C      9.D      10.C

11.D    12.B

1~5略

6.

7.解:

      

      

其展開式中含的項是:,系數等于

8.解:根據題意:

9.解:,橢圓離心率為

10.解:依腰意作出圖形.取中點,連接,則,不妨設四面體棱長為2,則是等腰三角形,必是銳角,就是所成的角,

11.解:已知兩腰所在直線斜率為1,,設底邊所在直線斜率為,已知底角相等,由到角公式得:

       ,解得

       由于等腰三角底邊過點(,0)則只能取

12.解:如圖,正四面體中,

      

中心,連,此四面體內切球與外接球具有共同球心必在上,并且等于內切球半徑,等于外接球半徑.記面積為,則

,從而

二、

13..解:共線

14..解:,曲線在(1,0)處的切線與直線垂直,則的傾角是

15.曲線     ①,化作標準形式為,表示橢圓,由于對稱性.取焦點,過且傾角是135°的弦所在直線方程為:,即②,聯立式①與式②.消去y,得:,由弦長公式得:

16.充要條件①:底面是正三角形,頂點在底面的射影恰是底面的中心.

充要條件②:底面是正三角形.且三條側棱長相等,

充要條件③:底面是正三角形,且三個側面與底面所成角相等.

再如:底面是正三角形.且三條側棱與底面所成角相等;三條側棱長相等,且三個側面與底面所成角相等;三個側面與底面所成角相等,三個側面兩兩所成二面角相等.

三、

17.解:,則.由正弦定理得

      

      

      

18.(1)證:已知是正三棱柱,取中點中點,連,則兩兩垂直,以軸建立空間直角坐標系,又已知

,則,又因相交,故

(2)解:由(1)知,是面的一個法向量.

             

,設是面的一個法向量,則①,②,取,聯立式①、②解得,則

              二面角是銳二面角,記其大小為.則

             

二面角的大小,亦可用傳統方法解(略).

19.解:已知各投保學生是否出險相互獨立,且每個投保學生在一年內出險的概率都是,記投保的5000個學生中出險的人數為,則(5000,0.004)即服從二項分布.

(1)記“保險公司在學平險險種中一年內支付賠償金至少5000元”為事件A,則

             

             

(2)該保險公司學平險除種總收入為元=25萬元,支出成本8萬元,支付賠償金5000元=0.5萬元,盈利萬元.

~知,

進而萬元.

故該保險公司在學平險險種上盈利的期望是7萬元.

20.解(1):由,即

              ,而

由表可知,上分別是增函數,在上分別是減函數.

.   

(2)時,等價于,記

,因

上是減函數,,故

時,就是,顯然成立,綜上可得的取值范圍是:

22.解:(1)由條件可知橢圓的方程是:

             

                ①,直線的方程是            ②,

聯立式①、②消去并整理得,由此出發時,是等比數列,

(2)由(1)可知,.當時,

      

      

       是遞減數列

       對恒成立

       時,是遞減數列.

21.解(1):,由解得函數定義域呈

              ,由解得,列表如下:

0

0

極大

極小

              解得,進而求得中點

              己知在直線上,則

       (2)

,則,點到直線的距離

,由于直線與線段相交于,則,則

,則

其次,,同理求得的中離:

,即,由

時,

,當時,.注意到,由對稱性,時仍有

,進而

故四邊形的面積:

時,

 

 


同步練習冊答案
主站蜘蛛池模板: 国产精品午夜电影 | 欧洲av在线 | 97色资源| 日韩h在线观看 | 成人免费看 | 日本色综合 | 国产高清精品在线 | 日本黄色免费网站 | 欧美影院在线 | www亚洲免费国内精品 | 久久国产精品久久久久久 | 日韩av在线一区二区 | 中文字幕日本一区 | 日本在线视频观看 | 亚洲国产二区三区 | 精品视频99 | а天堂中文最新一区二区三区 | 日韩成人高清 | 欧美八区 | 国产日韩视频在线 | 不卡视频一区二区 | 不卡视频一区 | 色噜噜视频 | 日韩精品一区二区三区中文在线 | 欧美色综合天天久久综合精品 | 欧美操 | 久久综合狠狠综合久久综合88 | 91亚洲高清 | 亚洲视频手机在线 | 偷拍自拍亚洲色图 | 色综合五月婷婷 | 国产精品不卡视频 | 影视一区二区 | 一区二区在线视频 | 三级在线观看 | 国产综合久久久久久鬼色 | 91免费观看视频 | 天天干国产 | 能免费看的av | 直接在线观看的三级网址 | 羞羞av|