題目列表(包括答案和解析)
(本題滿分12分)
對甲、乙兩種商品的重量的誤差進行抽查,測得數據如下(單位:):
甲:13 15 14 14 9 14 21 9 10 11
乙:10 14 9 12 15 14 11 19 22 16
(1)畫出樣本數據的莖葉圖,并指出甲,乙兩種商品重量誤差的中位數;
(2)計算甲種商品重量誤差的樣本方差;
(3)現從重量誤差不低于15的乙種商品中隨機抽取兩件,求重量誤差為19的商品被抽
中的概率。
(本題滿分12分)設{an}是等差數列,{bn}是各項都為正數的等比數列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求{an},{bn}的通項公式;
(2)求數列的前n項和Sn.
(本題滿分12分)
對甲、乙兩種商品的重量的誤差進行抽查,測得數據如下(單位:):
甲:13 15 14 14 9 14 21 9 10 11
乙:10 14 9 12 15 14 11 19 22 16
(1)畫出樣本數據的莖葉圖,并指出甲,乙兩種商品重量誤差的中位數;
(2)計算甲種商品重量誤差的樣本方差;
(3)現從重量誤差不低于15的乙種商品中隨機抽取兩件,求重量誤差為19的商品被抽
中的概率。
(本題滿分12分)探究函數的最小值,并確定取得最小值時x的值. 列表如下, 請觀察表中y值隨x值變化的特點,完成以下的問題.
x | … | 0.25 | 0.5 | 0.75 | 1 | 1.1 | 1.2 | 1.5 | 2 | 3 | 5 | … |
y | … | 8.063 | 4.25 | 3.229 | 3 | 3.028 | 3.081 | 3.583 | 5 | 9.667 | 25.4 | … |
(本題滿分12分)對甲、乙兩種商品的重量的誤差進行抽查,測得數據如下(單位:):
甲:13 15 14 14 9 14 21 9 10 11
乙:10 14 9 12 15 14 11 19 22 16
(1)畫出樣本數據的莖葉圖,并指出甲,乙兩種商品重量誤差的中位數;
(2)計算甲種商品重量誤差的樣本方差;
(3)現從重量誤差不低于15的乙種商品中隨機抽取兩件,求重量誤差為19的商品被抽中的概率。
1――12 A B B B B C D D C A C B
13、1 14、e 15、 16、①②④
17、解在
上是增函數,
方程
=x2 + (m ? 2 )x + 1 = 0的兩個根在0至3之間
∴∴
∴
<m≤0
依題意得:m的取值范圍是:<m≤-1或m>0
18、解:(1),
當a=1時 解集為
當a>1時,解集為,
當0<a<1時,解集為;
(2)依題意知f(1)是f(x)的最小值,又f(1)不可能是端點值,則f(1)是f(x)的一個極小值,由,
19、解:(1)當所以f(-x)=-(-x)2-(-x)+5=-x2+x+5,
所以f(x)=
(2)由題意,不妨設A點在第一象限,坐標為(t,-t2-t+5)其中,,
則S(t)=S ABCD=2t(-t2-t+5)=-2t3-2t2+10t.,
令得
(舍去),t2=1.
當時
,所以S(t)在
上單調遞增,在
上單調遞減,
所以當t=1時,ABCD的面積取得極大值也是S(t)在上的最大值。
從而當t=1時,矩形ABCD的面積取得最大值6.
20、解:
21、解:,
令,要使
在其定義域
內為單調函數,只需
在
內滿足:
或
恒成立.
① 當時,
,∵
,∴
,∴
,
∴在
內為單調遞減.
② 當時,
,對稱軸為
, ∴
.
只需,即
時
,
,
∴在
內為單調遞增。
③當時,
,對稱軸為
.
只需,即
時
在
恒成立.
綜上可得,或
.
22、解:(Ⅰ)
同理,令
∴f(x)單調遞增區間為,單調遞減區間為
.
由此可知
(Ⅱ)由(I)可知當時,有
,
即.
.
(Ⅲ) 設函數
∴函數)上單調遞增,在
上單調遞減.
∴的最小值為
,即總有
而
即
令則
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com