題目列表(包括答案和解析)
已知函數的圖象過坐標原點O,且在點
處的切線的斜率是
.
(Ⅰ)求實數的值;
(Ⅱ)求在區間
上的最大值;
(Ⅲ)對任意給定的正實數,曲線
上是否存在兩點P、Q,使得
是以O為直角頂點的直角三角形,且此三角形斜邊中點在
軸上?說明理由.
【解析】第一問當時,
,則
。
依題意得:,即
解得
第二問當時,
,令
得
,結合導數和函數之間的關系得到單調性的判定,得到極值和最值
第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在
軸兩側。
不妨設,則
,顯然
∵是以O為直角頂點的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
(Ⅰ)當時,
,則
。
依題意得:,即
解得
(Ⅱ)由(Ⅰ)知,
①當時,
,令
得
當變化時,
的變化情況如下表:
|
|
0 |
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
極小值 |
單調遞增 |
極大值 |
|
又,
,
。∴
在
上的最大值為2.
②當時,
.當
時,
,
最大值為0;
當時,
在
上單調遞增。∴
在
最大值為
。
綜上,當時,即
時,
在區間
上的最大值為2;
當時,即
時,
在區間
上的最大值為
。
(Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在
軸兩側。
不妨設,則
,顯然
∵是以O為直角頂點的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
若,則
代入(*)式得:
即,而此方程無解,因此
。此時
,
代入(*)式得: 即
(**)
令
,則
∴在
上單調遞增, ∵
∴
,∴
的取值范圍是
。
∴對于,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實數,曲線
上存在兩點P、Q,使得
是以O為直角頂點的直角三角形,且此三角形斜邊中點在
軸上
下列命題中正確的是( )
A、如果兩條直線平行,則它們的斜率相等
B、如果兩條直線垂直,則它們的斜率互為負倒數
C、如果兩條直線的斜率之積為-1,則兩條直線垂直
D、如果兩條直線的斜率不存在,則該直線一定平行與y軸
曲線恰有3個不同的交點,則
A. B.
0 C.
D.不存在滿足上述條件的a
A.A={1,2,4,8,16}
B.A={0,1,2,log23}
C.A{0,1,2,log23}
D.不存在滿足條件的集合
設f:x→y=2x是A→B的映射,已知集合B={0,1,2,3,4},則A滿足( )
A.A={1,2,4,8,16} B.A={0,1,2,log23}
C.A{0,1,2,log23} D.不存在滿足條件的集合
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com