題目列表(包括答案和解析)
設函數
(1)當時,求曲線
處的切線方程;
(2)當時,求
的極大值和極小值;
(3)若函數在區間
上是增函數,求實數
的取值范圍.
【解析】(1)中,先利用,表示出點
的斜率值
這樣可以得到切線方程。(2)中,當
,再令
,利用導數的正負確定單調性,進而得到極值。(3)中,利用函數在給定區間遞增,說明了
在區間
導數恒大于等于零,分離參數求解范圍的思想。
解:(1)當……2分
∴
即為所求切線方程。………………4分
(2)當
令………………6分
∴遞減,在(3,+
)遞增
∴的極大值為
…………8分
(3)
①若上單調遞增。∴滿足要求。…10分
②若
∵恒成立,
恒成立,即a>0……………11分
時,不合題意。綜上所述,實數
的取值范圍是
已知函數在
處取得極值2.
⑴ 求函數的解析式;
⑵ 若函數在區間
上是單調函數,求實數m的取值范圍;
【解析】第一問中利用導數
又f(x)在x=1處取得極值2,所以,
所以
第二問中,
因為,又f(x)的定義域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在
上單調遞減,當f(x)在區間(m,2m+1)上單調遞增,則有
,得
解:⑴ 求導,又f(x)在x=1處取得極值2,所以
,即
,所以
…………6分
⑵ 因為,又f(x)的定義域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在
上單調遞減,當f(x)在區間(m,2m+1)上單調遞增,則有
,得
, …………9分
當f(x)在區間(m,2m+1)上單調遞減,則有
得
…………12分
.綜上所述,當時,f(x)在(m,2m+1)上單調遞增,當
時,f(x)在(m,2m+1)上單調遞減;則實數m的取值范圍是
或
對于函數,有以下四個命題:
①f(x)為奇函數;②f(x)的最小正周期為;③f(x)在(
)上單調遞減;④
是f(x)的一條對稱軸,其中真命題有 (把所有正確命題的序號都填上)
已知函數f(x)=x2-2x-3與y=-3在同一平面直角坐標系中的圖象如圖所示,記F(x)為“f(|x|)”與“-3”兩者中的較小者,且當f(|x|)=-3時,F(x)=-3.有以下四種關于函數y=F(x)的說法:
①F(4)<F(-5);
②F(-1)是y=F(x)的最小值;
③方程F(x)=0有兩個實數根;
④y=F(x)在(-∞,1)上單調遞減.
其中真命題的個數為
A.0
B.1
C.2
D.3
對于函數y=f(x),定義域為D=[-2,2].
①若f(-1)=f(1),f(-2)=f(2),則y=f(x)是D上的偶函數;
②若對于x∈[-2,2],都有f(-x)+f(x)=0,則y=f(x)是D上的奇函數;
③若函數y=f(x)在D上具有單調性且f(0)>f(1)則y=f(x)是D上的遞減函數;
④若f(-1)<f(0)<f(1)<f(2),則y=f(x)是D上的遞增函數.
以上命題正確的是________(寫出所有正確命題的序號).
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com