日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

已知數列是首項為.公差為1的等差數列.數列滿足.若對任意的,都有成立,則實數的取值范圍是 . 查看更多

 

題目列表(包括答案和解析)

已知數列是首項為1公差為正的等差數列,數列是首項為1的等比數列,設,且數列的前三項依次為1,4,12,

(1)求數列的通項公式;

(2)若等差數列的前n項和為Sn,求數列的前項的和Tn

查看答案和解析>>

已知數列是首項為1,公差為2的等差數列,是首項為1,公比為3的等比數列,
(1)求數列的通項公式 ; 高@考☆資&源*網(2)求數列的前n項和

查看答案和解析>>

已知數列是首項為1,公差為2的等差數列,是首項為1,公比為3的等比數列,

   (1)求數列的通項公式 ;  (2)求數列的前n項和

 

查看答案和解析>>

 

已知數列是首項為1的等差數列,其公差,且成等比數列.

(1)求數列的通項公式;       

(2) 設數列的前項和為,求的最大值

 

 

 

 

 

 

 

 

 

查看答案和解析>>

已知數列是首項為1,公差為2的等差數列,是首項為1,公比為3的等比數列。
(1)求數列的通項公式;
(2)求數列的前n項和

查看答案和解析>>

一、填空題(每題5分,理科總分55分、文科總分60分):

1. ;      2. 理:2;文:;      3. 理:1.885;文:2;

4. 理:;文:1.885;   5. 理:;文:4;   6. 理:;文:

7. 理:;文:;     8. 理:;文:6;    9. 理:;文:

10. 理:1; 文:;    11. 理:;文:;     12. 文:

二、選擇題(每題4分,總分16分):

題號

理12;文13

理13;文14

理:14;文:15

理15;文:16

答案

A

C

B

C

 

三、解答題:

16.(理,滿分12分)

解:因為拋物線的焦點的坐標為,設

由條件,則直線的方程為

代入拋物線方程,可得,則.

于是,.

 

…2

 

 

…4

 

…8

 

 

…12

17.(文,滿分12分)

解:因為,所以由條件可得.

即數列是公比的等比數列.

所以,.

 

 

 

…4

 

…6

 

 

…8

 

…12

(理)17.(文)18. (滿分14分)

解:因為

所以,

又由,即

時,;當時,.

所以,集合.

 

 

 

…3

 

 

…7

 

 

 

…11

 

 

 

 

 

 

…14

18.(理,滿分15分,第1小題6分,第2小題9分)

解:(1)當時,

 

,所以.

(2)證:由數學歸納法

(i)當時,易知,為奇數;

(ii)假設當時,,其中為奇數;

則當時,

         

所以,又,所以是偶數,

而由歸納假設知是奇數,故也是奇數.

綜上(i)、(ii)可知,的值一定是奇數.

證法二:因為

為奇數時,

則當時,是奇數;當時,

因為其中中必能被2整除,所以為偶數,

于是,必為奇數;

為偶數時,

其中均能被2整除,于是必為奇數.

綜上可知,各項均為奇數.

 

 

…3

 

 

 

 

 

 

…6

 

 

 

 

…8

 

 

 

 

…10

 

 

 

…14

 

…15

 

 

 

 

 

 

 

 

…10

 

 

 

 

…14

 

…15

19. (文,滿分14分)

解:如圖,設中點為,聯結.

由題意,,,所以為等邊三角形,

,且.

所以.

而圓錐體的底面圓面積為,

所以圓錐體體積.

 

 

 

 

…3

 

 

 

…8

 

…10

 

…14

(理)19. (文)20. (滿分16分,第1小題4分,第2小題6分,第3小題6分)

解:(1)由題意,當之間的距離為1米時,應位于上方,

且此時邊上的高為0.5米.

又因為米,可得米.

所以,平方米,

即三角通風窗的通風面積為平方米.

(2)1如圖(1)所示,當在矩形區域滑動,即時,

的面積

2如圖(2)所示,當在半圓形區域滑動,即時,

,故可得的面積

 

綜合可得:

(3)1在矩形區域滑動時,在區間上單調遞減,

則有

2在半圓形區域滑動時,

等號成立.

因而當(米)時,每個三角通風窗得到最大通風面積,最大面積為(平方米).

 

 

 

 

…2

 

 

 

 

…4

 

 

 

 

 

 

…6

 

 

 

 

 

 

 

 

 

 

 

 

 

…9

 

 

 

 

 

…10

 

 

 

 

 

…12

 

 

 

 

 

 

…15

 

 

 

…16

21(文,滿分18分,第1小題5分,第2小題6分,第3小題7分)

解:(1)設右焦點坐標為).

因為雙曲線C為等軸雙曲線,所以其漸近線必為

由對稱性可知,右焦點到兩條漸近線距離相等,且.

于是可知,為等腰直角三角形,則由

又由等軸雙曲線中,.

即,等軸雙曲線的方程為.

(2)設為雙曲線直線的兩個交點.

因為,直線的方向向量為,直線的方程為

.

代入雙曲線的方程,可得

于是有

          .

(3)假設存在定點,使為常數,其中為直線與雙曲線的兩個交點的坐標.

   ①當直線軸不垂直時,設直線的方程為

代入,可得.

   由題意可知,,則有

于是,

要使是與無關的常數,當且僅當,此時.

 ②當直線軸垂直時,可得點,

 若亦為常數.

綜上可知,在軸上存在定點,使為常數.

 

 

 

 

 

 

…3

 

 

 

…5

 

 

 

 

 

 

…7

 

 

 

…9

 

 

 

 

 

…11

 

 

 

 

 

 

 

 

…13

 

 

 

 

 

 

 

 

 

 

 

…16

 

 

…17

 

…18

 

20(理,滿分22分,第1小題4分,第2小題6分,第3小題12分)

解:(1)解法一:由題意,四邊形是直角梯形,且

所成的角即為.

因為,又平面

所以平面,則有.

    因為,

所以,則

即異面直線所成角的大小為.

解法二:如圖,以為原點,直線軸、直線軸、直線軸,

建立空間直角坐標系.

于是有,則有,又

則異面直線所成角滿足,

    所以,異面直線

同步練習冊答案
主站蜘蛛池模板: 日韩视频中文字幕 | 男女看片黄全部免费 | 国产精品一区二区久久乐夜夜嗨 | 久久一区二区三区四区 | 国产精品久久久麻豆 | 国产视频91在线 | 欧美在线观看一区 | 亚洲伊人久久网 | 一级毛片,一级毛片 | 欧美二区精品 | 日韩3p视频| 日韩av一区二区在线观看 | 国产99热 | 伊人影院在线观看 | 亚洲1区2区在线 | 日本黄色小视频 | 日韩激情视频在线观看 | 国产成人小视频 | 国产精品久久久久久久久久三级 | www欧美 | 91久久久久久久久 | 久久91| 国产传媒毛片精品视频第一次 | porn一区 | 色呦呦在线视频 | 福利网址 | 日韩在线精品视频 | 免费小毛片 | 天堂在线视频精品 | 中文字幕在线一区二区三区 | 日韩午夜| 成人欧美一区二区三区在线播放 | 国产精品久久久久无码av | 国产精品美女久久久久人 | 日韩精品免费在线观看 | 日韩中字在线观看 | 国产精品久久精品 | 日韩在线www | 欧美极品视频 | 色婷婷网 | 亚洲国产视频网站 |