題目列表(包括答案和解析)
已知函數的最小值為0,其中
(Ⅰ)求的值;
(Ⅱ)若對任意的有
≤
成立,求實數
的最小值;
(Ⅲ)證明(
).
【解析】(1)解:
的定義域為
由,得
當x變化時,,
的變化情況如下表:
x |
|
|
|
|
- |
0 |
+ |
|
|
極小值 |
|
因此,在
處取得最小值,故由題意
,所以
(2)解:當時,取
,有
,故
時不合題意.當
時,令
,即
令,得
①當時,
,
在
上恒成立。因此
在
上單調遞減.從而對于任意的
,總有
,即
在
上恒成立,故
符合題意.
②當時,
,對于
,
,故
在
上單調遞增.因此當取
時,
,即
不成立.
故不合題意.
綜上,k的最小值為.
(3)證明:當n=1時,不等式左邊==右邊,所以不等式成立.
當時,
在(2)中取,得
,
從而
所以有
綜上,,
已知函數。
(1)求函數的最小正周期和最大值;
(2)求函數的增區間;
(3)函數的圖象可以由函數的圖象經過怎樣的變換得到?
【解析】本試題考查了三角函數的圖像與性質的運用。第一問中,利用可知函數的周期為
,最大值為
。
第二問中,函數的單調區間與函數
的單調區間相同。故當
,解得x的范圍即為所求的區間。
第三問中,利用圖像將的圖象先向右平移
個單位長度,再把橫坐標縮短為原來的
(縱坐標不變),然后把縱坐標伸長為原來的
倍(橫坐標不變),再向上平移1個單位即可。
解:(1)函數的最小正周期為
,最大值為
。
(2)函數的單調區間與函數
的單調區間相同。
即
所求的增區間為
,
即
所求的減區間為
,
。
(3)將的圖象先向右平移
個單位長度,再把橫坐標縮短為原來的
(縱坐標不變),然后把縱坐標伸長為原來的
倍(橫坐標不變),再向上平移1個單位即可。
函數在同一個周期內,當
時,
取最大值1,當
時,
取最小值
。
(1)求函數的解析式
(2)函數的圖象經過怎樣的變換可得到
的圖象?
(3)若函數滿足方程
求在
內的所有實數根之和.
【解析】第一問中利用
又因
又
函數
第二問中,利用的圖象向右平移
個單位得
的圖象
再由圖象上所有點的橫坐標變為原來的
.縱坐標不變,得到
的圖象,
第三問中,利用三角函數的對稱性,的周期為
在
內恰有3個周期,
并且方程在
內有6個實根且
同理,可得結論。
解:(1)
又因
又
函數
(2)的圖象向右平移
個單位得
的圖象
再由圖象上所有點的橫坐標變為原來的
.縱坐標不變,得到
的圖象,
(3)的周期為
在
內恰有3個周期,
并且方程在
內有6個實根且
同理,
故所有實數之和為
(本小題滿分12分)已知f (x)=(1+x)m+(1+2x)n(m,n∈N*)的展開式中x的系數為11.
(1)求x2的系數的最小值;
(2)當x2的系數取得最小值時,求f (x)展開式中x的奇次冪項的系數之和.
解: (1)由已知+2
=11,∴m+2n=11,x2的系數為
+22
=
+2n(n-1)=
+(11-m)(
-1)=(m-
)2+
.
∵m∈N*,∴m=5時,x2的系數取最小值22,此時n=3.
(2)由(1)知,當x2的系數取得最小值時,m=5,n=3,
∴f (x)=(1+x)5+(1+2x)3.設這時f (x)的展開式為f (x)=a0+a1x+a2x2+…+a5x5,
令x=1,a0+a1+a2+a3+a4+a5=25+33,
令x=-1,a0-a1+a2-a3+a4-a5=-1,
兩式相減得2(a1+a3+a5)=60, 故展開式中x的奇次冪項的系數之和為30.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com