題目列表(包括答案和解析)
(12分)已知橢圓中心在原點,一個焦點為
,且長軸長與短軸長的比是
。
(1)求橢圓的方程;(5分)
(2)是否存在斜率為的直線
,使直線
與橢圓
有公共點,且原點
與直線
的距離等于4;若存在,求出直線
的方程,若不存在,說明理由。(7分)。
(12分)已知橢圓中心在原點,一個焦點為
,且長軸長與短軸長的比是
。
(1)求橢圓的方程;(5分)
(2)是否存在斜率為的直線
,使直線
與橢圓
有公共點,且原點
與直線
的距離等于4;若存在,求出直線
的方程,若不存在,說明理由。(7分)。
已知點(
),過點
作拋物線
的切線,切點分別為
、
(其中
).
(Ⅰ)若,求
與
的值;
(Ⅱ)在(Ⅰ)的條件下,若以點為圓心的圓
與直線
相切,求圓
的方程;
(Ⅲ)若直線的方程是
,且以點
為圓心的圓
與直線
相切,
求圓面積的最小值.
【解析】本試題主要考查了拋物線的的方程以及性質的運用。直線與圓的位置關系的運用。
中∵直線與曲線
相切,且過點
,∴
,利用求根公式得到結論先求直線
的方程,再利用點P到直線的距離為半徑,從而得到圓的方程。
(3)∵直線的方程是
,
,且以點
為圓心的圓
與直線
相切∴點
到直線
的距離即為圓
的半徑,即
,借助于函數的性質圓
面積的最小值
(Ⅰ)由可得,
. ------1分
∵直線與曲線
相切,且過點
,∴
,即
,
∴,或
, --------------------3分
同理可得:,或
----------------4分
∵,∴
,
. -----------------5分
(Ⅱ)由(Ⅰ)知,,
,則
的斜率
,
∴直線的方程為:
,又
,
∴,即
. -----------------7分
∵點到直線
的距離即為圓
的半徑,即
,--------------8分
故圓的面積為
. --------------------9分
(Ⅲ)∵直線的方程是
,
,且以點
為圓心的圓
與直線
相切∴點
到直線
的距離即為圓
的半徑,即
, ………10分
∴
,
當且僅當,即
,
時取等號.
故圓面積的最小值
.
雙曲線的離心率
,
是左,右焦點,過
作
軸的垂線與雙曲線在第一象限交于P點,直線F1P與右準線交于Q點,已知
(1)求雙曲線的方程;
(2)設過的直線MN分別與左支,右支交于M、N ,線段MN的垂線平分線
與
軸交于點
,若
,求
的取值范圍。
江西省重點中學協作體七校聯考
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com