科目: 來源: 題型:
【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知△ABC的面積為
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的左.右焦點分別為
,短軸兩個端點為
,且四邊形
的邊長為
的正方形.
(Ⅰ)求橢圓的方程;
(Ⅱ)若,分別是橢圓長軸的左,右端點,動點
滿足
,連結
,交橢圓于點
.證明:
的定值;
(Ⅲ)在(Ⅱ)的條件下,試問軸上是否存在異于點
,的定點
,使得以
為直徑的圓恒過直線
,
的交點,若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】設是數列
的前
項和,對任意
都有
成立(其中
是常數).
(1)當時,求
:
(2)當時,
①若,求數列
的通項公式:
②設數列中任意(不同)兩項之和仍是該數列中的一項,則稱該數列是“
數列”,如果
,試問:是否存在數列
為“
數列”,使得對任意
,都有
,且
,若存在,求數列
的首項
的所有取值構成的集合;若不存在.說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分.
有時可用函數
描述學習某學科知識的掌握程度,其中x表示某學科知識的學習次數(),
表示對該學科知識的掌握程度,正實數a與學科知識有關.
(1) 證明:當時,掌握程度的增加量
總是下降;
(2) 根據經驗,學科甲、乙、丙對應的a的取值區間分別為,
,
.當學習某學科知識6次時,掌握程度是85%,請確定相應的學科.
查看答案和解析>>
科目: 來源: 題型:
【題目】設拋物線的焦點為
,經過
軸正半軸上點
的直線
交
于不同的兩點
和
.
(1)若,求點
的坐標;
(2)若,求證:原點
總在以線段
為直徑的圓的內部;
(3)若,且直線
∥
,
與
有且只有一個公共點
,問:△
的面積是否存在最小值?若存在,求出最小值,并求出
點的坐標,若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】汽車智能輔助駕駛已得到廣泛應用,其自動剎車的工作原理是用雷達測出車輛與前方障礙物之間的距離(并結合車速轉化為所需時間),當此距離等于報警距離時就開始報警提醒,等于危險距離時就自動剎車,某種算法(如下圖所示)將報警時間劃分為4段,分別為準備時間、人的反應時間
、系統反應時間
、制動時間
,相應的距離分別為
、
、
、
,當車速為
(米/秒),且
時,通過大數據統計分析得到下表(其中系數
隨地面濕滑成都等路面情況而變化,
).
階段 | 0、準備 | 1、人的反應 | 2、系統反應 | 3、制動 |
時間 |
|
| ||
距離 |
|
|
(1)請寫出報警距離(米)與車速
(米/秒)之間的函數關系式
,并求
時,若汽車達到報警距離時人和系統均不采取任何制動措施,仍以此速度行駛,則汽車撞上固定障礙物的最短時間(精確到0.1秒);
(2)若要求汽車不論在何種路面情況下行駛,報警距離均小于80米,則汽車的行駛速度應限制在多少米/秒以下?合多少千米/小時?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,圓錐的底面半徑,高
,點
是底面直徑
所對弧的中點,點
是母線
的中點.
(1)求圓錐的側面積和體積;
(2)求異面直線與
所成角的大小.(結果用反三角函數表示)
查看答案和解析>>
科目: 來源: 題型:
【題目】某花圃為提高某品種花苗質量,開展技術創新活動,在,
實驗地分別用甲、乙方法培訓該品種花苗.為觀測其生長情況,分別在實驗地隨機抽取各50株,對每株進行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80及以上的花苗為優質花苗.
(1)求圖中的值;
(2)填寫下面的列聯表,并判斷是否有90%的把握認為優質花苗與培育方法有關.
優質花苗 | 非優質花苗 | 合計 | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合計 |
附:下面的臨界值表僅供參考.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中
.)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com