科目: 來源: 題型:
【題目】已知線段是過拋物線
的焦點F的一條弦,過點A(A在第一象限內)作直線
垂直于拋物線的準線,垂足為C,直線
與拋物線相切于點A,交x軸于點T,給出下列命題:
(1);
(2);
(3).
其中正確的命題個數為( )
A.B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】下圖統計了截止到2019年年底中國電動汽車充電樁細分產品占比及保有量情況,關于這5次統計,下列說法正確的是( )
A.私人類電動汽車充電樁保有量增長率最高的年份是2018年
B.公共類電動汽車充電樁保有量的中位數是25.7萬臺
C.公共類電動汽車充電樁保有量的平均數為23.12萬臺
D.從2017年開始,我國私人類電動汽車充電樁占比均超過50%
查看答案和解析>>
科目: 來源: 題型:
【題目】《算法統宗》是中國古代數學名著,由明代數學家程大位編著,它對我國民間普及珠算和數學知識起到了很大的作用,是東方古代數學的名著.在這部著作中,許多數學問題都是以歌訣形式呈現的,“九兒問甲歌”就是其中一首:“一個公公九個兒,若問生年總不知,自長排來差三歲,共年二百又零七,借問長兒多少歲,各兒歲數要詳推.”這首歌決的大意是:“一位老公公有九個兒子,九個兒子從大到小排列,相鄰兩人的年齡差三歲,并且兒子們的年齡之和為207歲,請問大兒子多少歲,其他幾個兒子年齡如何推算.”在這個問題中,記這位公公的第個兒子的年齡為
,則
( )
A.17B.29C.23D.35
查看答案和解析>>
科目: 來源: 題型:
【題目】設橢圓的左頂點為
,右頂點為
,已知橢圓
的離心率為
,且以線段
為直徑的圓被直線
所截的弦長為
.
(1)求橢圓的方程;
(2)記橢圓的右焦點為
,過點
且斜率為
的直線交橢圓于
兩點.若線段
的垂直平分線與
軸交于點
,求
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】為貫徹落實黨中央全面建設小康社會的戰略部署,某貧困地區的廣大黨員干部深入農村積極開展“精準扶貧”工作.經過多年的精心幫扶,截至2018年底,按照農村家庭人均年純收入8000元的小康標準,該地區僅剩部分家庭尚未實現小康,2019年6月,為估計該地能否在2020年全面實現小康,統計了該地當時最貧困的一個家庭2019年1至6月的人均月純收入,作出散點如下:
根據盯關性分析,發現其家庭人均月純收入與時間代碼
之間具有較強的線性相關關系(記2019年1月、2月……分別為
,
,…,依此類推),由此估計該家庭2020年能實現小康生活.但2020年1月突如其來的新冠肺炎疫情影響了奔小康的進展,該家庭2020年第一季度每月的人均月純收入只有2019年12月的預估值的
.
(1)求關于
的線性回歸方程;
(2)求該家庭2020年3月份的人均月純收入;
(3)如果以該家庭3月份人均月純收入為基數,以后每月增長率為,問該家庭2020年底能否實現小康生活?
參考數據:,
,
參考公式:,
.
查看答案和解析>>
科目: 來源: 題型:
【題目】謝賓斯基三角形是一種分形,由波蘭數學家謝賓斯基在1915年提出,先作一個正三角形挖去一個“中心三角形”(即以原三角形各邊的中點為頂點的三角形),然后在剩下的小三角形中又挖去一個“中心三角形”,我們用白色代表挖去的面積,那么黑三角形為剩下的面積(我們稱黑三角形為謝賓斯基三角形).向圖中第4個大正三角形中隨機撒512粒大小均勻的細小顆粒物,則落在白色區域的細小顆粒物的數量約是( )
A.B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】某工廠生產某種電子產品,每件產品合格的概率均為,現工廠為提高產品聲譽,要求在交付用戶前每件產品都通過合格檢驗,已知該工廠的檢驗儀器一次最多可檢驗
件該產品,且每件產品檢驗合格與否相互獨立.若每件產品均檢驗一次,所需檢驗費用較多,該工廠提出以下檢驗方案:將產品每
個(
)一組進行分組檢驗,如果某一組產品檢驗合格,則說明該組內產品均合格,若檢驗不合格,則說明該組內有不合格產品,再對該組內每一件產品單獨進行檢驗,如此,每一組產品只需檢驗一次或
次.設該工廠生產
件該產品,記每件產品的平均檢驗次數為
.
(1)的分布列及其期望;
(2)(i)試說明,當越大時,該方案越合理,即所需平均檢驗次數越少;
(ii)當時,求使該方案最合理時
的值及
件該產品的平均檢驗次數.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的離心率
,橢圓
上的點到其左焦點
的最大距離為
.
(1)求橢圓的標準方程;
(2)過橢圓左焦點
的直線
與橢圓
交于
兩點,直線
,過點
作直線
的垂線與直線
交于點
,求
的最小值和此時直線
的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】波羅尼斯(古希臘數學家,約公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質網羅殆盡幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內與兩定點距離的比為常數k(且
)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.現有
,
,則當
的面積最大時,AC邊上的高為_______________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com