科目: 來源: 題型:
【題目】斐波拉契數列,指的是這樣一個數列:1,1,2,3,5,8,13,21,…,在數學上,斐波拉契數列{an}定義如下:a1=a2=1,an=an﹣1+an﹣2(n≥3,n∈N),隨著n的增大,越來越逼近黃金分割
0.618,故此數列也稱黃金分割數列,而以an+1、an為長和寬的長方形稱為“最美長方形”,已知某“最美長方形”的面積約為200平方厘米,則該長方形的長大約是( )
A.20厘米B.19厘米C.18厘米D.17厘米
查看答案和解析>>
科目: 來源: 題型:
【題目】已知集合M是滿足下列性質的函數f(x)的全體:存在非零常數T,對任意x∈R,有f(x+T)=Tf(x)成立.
(1)函數f(x)=x是否屬于集合M?說明理由;
(2)設函數f(x)=ax(a>0,且a≠1)的圖象與y=x的圖象有公共點,證明:f(x)=ax∈M;
(3)若函數f(x)=sinkx∈M,求實數k的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數y=f1(x)的圖象以原點為頂點且過點(1,1),反比例函數y=f2(x)的圖象與直線y=x的兩個交點間距離為8,f(x)= f1(x)+ f2(x).
(Ⅰ) 求函數f(x)的表達式;
(Ⅱ) 證明:當a>3時,關于x的方程f(x)= f(a)有三個實數解.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數是有如下性質:如果常數
,那么該函數在
上是減函數,在
上是增函數.
(1)如果函數的值域為
,求b的值;
(2)研究函數(常數
)在定義域內的單調性,并說明理由;
(3)對函數和
(常數
)作出推廣,使它們都是你所推廣的函數的特例.研究推廣后的函數的單調性(只須寫出結論,不必證明),并求函數
(n是正整數)在區間
上的最大值和最小值.(可利用你的研究結論)
查看答案和解析>>
科目: 來源: 題型:
【題目】
已知函數的反函數.定義:若對給定的實數
,函數
與
互為反函數,則稱
滿足“
和性質”;若函數
與
互為反函數,則稱
滿足“
積性質”.
(1) 判斷函數是否滿足“1和性質”,并說明理由;
(2) 求所有滿足“2和性質”的一次函數;
(3) 設函數對任何
,滿足“
積性質”.求
的表達式.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于函數f(x)若存在x0∈R,f(x0)=x0成立,則稱x0為f(x)的不動點.已知f(x)=ax2+(b+1)x+b-1(a≠0).
(1)當a=1,b=-2時,求函數f(x)的不動點;
(2)若對任意實數b,函數f(x)恒有兩個相異的不動點,求a的取值范圍;
(3)在(2)的條件下,若y=f(x)圖象上A,B兩點的橫坐標是函數f(x)的不動點,且A,B兩點關于直線y=kx+對稱,求b的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓,右頂點
,上頂點為B,左右焦點分別為
,且
,過點A作斜率為
的直線l交橢圓于點D,交y軸于點E.
(1)求橢圓C的方程;
(2)設P為的中點,是否存在定點Q,對于任意的
都有
?若存在,求出點Q;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】阿波羅尼斯(古希臘數學家,約公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質網羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內與兩定點距離的比為常數的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.①若定點為
,寫出
的一個阿波羅尼斯圓的標準方程__________;②△
中,
,則當△
面積的最大值為
時,
______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com