(本小題滿分12分)
如圖,正三棱柱ABC—A1B1C1的底面邊長為a,點M在邊 BC上,△AMC1是以點M為直角頂點的等腰直角三角形。
(Ⅰ)求證點M為邊BC的中點;
(Ⅱ)求點C到平面AMC1的距離;
(Ⅲ)求二面角M—AC1—C的大小。
(Ⅰ)∵△AMC1為以點M為直角頂點的等腰直角三角形,
∴AM⊥C1M且AM=C1M
∵三棱柱ABC—A1B1C1,∴CC1⊥底面ABC
∴C1M在底面內射影為CM,AM⊥CM。
∵底面ABC為邊長為a的正三角形,
∴點M為BC邊的中點 --------------------4分
(Ⅱ)過點C作CH⊥MC1,由(Ⅰ)知AM⊥C1M且AM⊥CM,
∴AM⊥平面C1CM ∵CH在平面C1CM內,∴CH⊥AM,
∴CH⊥平面C1AM
由(Ⅰ)知,
∴∴
∴點C到平面AMC1的距離為底面邊長為-------------------8分
(Ⅲ)過點C作CI⊥AC1于I,連HI,∵CH⊥平面C1AM,
∴HI為CI在平面C1AM內的射影,
∴HI⊥AC1,∠CIH是二面角M—AC1—C的平面角,
在直角三角形ACC1中
,
∴∠CIH=45°, ∴二面角M—AC1—C的大小為45°
科目:高中數學 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業建設工程三類,這三類工程所含項目的個數分別占總數的、
、
.現有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分12分)
某民營企業生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com