【題目】如圖,在四棱錐中,底面
是矩形,側棱
底面
,且
,過棱
的中點
,作
交
于點
.
(1)證明:平面
;
(2)若面與面
所成二面角的大小為
,求
與面
所成角的正弦值.
科目:高中數學 來源: 題型:
【題目】如圖,已知中,
,點
平面
,點
在平面
的同側,且
在平面
上的射影分別為
,
.
(Ⅰ)求證:平面平面
;
(Ⅱ)若是
中點,求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線的參數方程是
(
是參數),以坐標原點為原點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)判斷直線與曲線
的位置關系;
(2)過直線上的點作曲線
的切線,求切線長的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其中無理數
.
(Ⅰ)若函數有兩個極值點,求
的取值范圍;
(Ⅱ)若函數的極值點有三個,最小的記為
,最大的記為
,若
的最大值為
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系中,直線l:,P為直線l上一點,且點P在極軸上方
以OP為一邊作正三角形
逆時針方向
,且
面積為
.
求Q點的極坐標;
求
外接圓的極坐標方程,并判斷直線l與
外接圓的位置關系.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
過點
,過坐標原點
作兩條互相垂直的射線與橢圓
分別交于
,
兩點.
(1)證明:當取得最小值時,橢圓
的離心率為
.
(2)若橢圓的焦距為2,是否存在定圓與直線
總相切?若存在,求定圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】十九大提出,堅決打贏脫貧攻堅戰,某幫扶單位為幫助定點扶貧村真脫貧,堅持扶貧同扶智相結合,幫助貧困村種植蜜柚,并利用電商進行銷售,為了更好地銷售,現從該村的蜜柚樹上隨機摘下了100個蜜柚進行測重,其質量分別在,
,
,
,
,
(單位:克)中,其頻率分布直方圖如圖所示.
(1)按分層抽樣的方法從質量落在,
的蜜柚中抽取5個,再從這5個蜜柚中隨機抽取2個,求這2個蜜柚質量均小于2000克的概率;
(2)以各組數據的中間數代表這組數據的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有5000個蜜柚等待出售,某電商提出兩種收購方案:
A. 所有蜜柚均以40元/千克收購;
B. 低于2250克的蜜柚以60元/個收購,高于或等于2250克的以80元/個收購.
請你通過計算為該村選擇收益最好的方案.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以
為極點,
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
;直線
的參數方程為
(
為參數),直線
與曲線
分別交于
,
兩點.
(1)寫出曲線的直角坐標方程和直線
的普通方程;
(2)若點的極坐標為
,
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex(x﹣a)2+4.
(1)若f(x)在(﹣∞,+∞)上單調遞增,求a的取值范圍;
(2)若x≥0,不等式f(x)≥0恒成立,求a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com