【題目】已知直線的參數方程是
(
是參數),以坐標原點為原點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)判斷直線與曲線
的位置關系;
(2)過直線上的點作曲線
的切線,求切線長的最小值.
科目:高中數學 來源: 題型:
【題目】甲船在島B的正南A處,AB=10千米.甲船以每小時4千米的速度向北航行,同時,乙船自B出發(fā)以每小時6千米的速度向北偏東60°的方向駛去.當甲船在A,B之間,且甲、乙兩船相距最近時,它們所航行的時間是( )
A. 分鐘 B.
小時 C. 21.5分鐘 D. 2.15分鐘
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對某地區(qū)兒童的身高與體重的一組數據,我們用兩種模型①,②
擬合,得到回歸方程分別為
,
,作殘差分析,如表:
身高 | 60 | 70 | 80 | 90 | 100 | 110 |
體重 | 6 | 8 | 10 | 14 | 15 | 18 |
0.41 | 0.01 | 1.21 | -0.19 | 0.41 | ||
-0.36 | 0.07 | 0.12 | 1.69 | -0.34 | -1.12 |
(Ⅰ)求表中空格內的值;
(Ⅱ)根據殘差比較模型①,②的擬合效果,決定選擇哪個模型;
(Ⅲ)殘差大于的樣本點被認為是異常數據,應剔除,剔除后對(Ⅱ)所選擇的模型重新建立回歸方程.
(結果保留到小數點后兩位)
附:對于一組數據,其回歸直線
的斜率和截距的最小二乘法估計分別為
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,正方體的棱長為
,
,
分別是棱
,
的中點,過直線
,
的平面分別與棱
、
交于
,
,設
,
,給出以下四個命題:
①平面平面
;
②當且僅當時,四邊形
的面積最小;
③四邊形周長
,
是單調函數;
④四棱錐的體積
為常函數;
以上命題中假命題的序號為( ).
A. ①④ B. ② C. ③ D. ③④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com