已知直線是過點
,方向向量為
的直線。圓方程
(1)求直線l的參數(shù)方程;
(2)設(shè)直線l與圓相交于、
兩點,求
的值。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
以坐標(biāo)原點O為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為:
,曲線C2的參數(shù)方程為:
,點N的極坐標(biāo)為
.
(Ⅰ)若M是曲線C1上的動點,求M到定點N的距離的最小值;
(Ⅱ)若曲線C1與曲線C2有有兩個不同交點,求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線 (t為參數(shù)),
(1)化C,C
的方程為普通方程,并說明它們分別表示什么曲線;
(2)若C上的點P對應(yīng)的參數(shù)為
,Q為C
上的動點,求
中點
到直線
(t為參數(shù))距離的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
【選修4—4:坐標(biāo)系與參數(shù)方程】
已知圓的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點
為極點,
軸的正半軸為極軸建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
.
(I)將圓的參數(shù)方程化為普通方程,將圓
的極坐標(biāo)方程化為直角坐標(biāo)方程;
(II)圓、
是否相交,若相交,請求出公共弦的長;若不相交,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分) 已知曲線的極坐標(biāo)方程為
,曲線
的方程是
, 直線
的參數(shù)方程是:
.
(1)求曲線的直角坐標(biāo)方程,直線
的普通方程;
(2)求曲線上的點到直線
距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
在樣本的頻率分布直方圖中,共有11個小長方形,若中間一個小長方形的面積等于其他10個小長方形面積和的,且樣本容量為160,則中間一組的頻數(shù)為( )
A.28 | B.32 | C.64 | D.128 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
,(
為參數(shù)),曲線
的參數(shù)方程為
,(
為參數(shù)),試求直線
和曲線
的普通方程,并求它們的公共點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com