【題目】秦九韶是我國南宋時期的數學家,普州(現四川省安岳縣)人,他在所著的《數書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入,
的值分別為5,2,則輸出
的值為( )
A.64B.68C.72D.133
科目:高中數學 來源: 題型:
【題目】甲袋中裝有2個白球,3個黑球,乙袋中裝有1個白球,2個黑球,這些球除顏色外完全相同.
(1)從兩袋中各取1個球,記事件:取出的2個球均為白球,求
;
(2)每次從甲、乙兩袋中各取2個球,若取出的白球不少于2個就獲獎(每次取完后將球放回原袋),共取了3次,記獲獎次數為,寫出
的分布列并求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】三角形面積為S=(a+b+c)r,a,b,c為三角形三邊長,r為三角形內切圓半徑,利用類比推理,可以得出四面體的體積為 ( )
A. V=abc B. V=
Sh
C. V=(ab+bc+ac)·h(h為四面體的高) D. V=
(S1+S2+S3+S4)·r(其中S1,S2,S3,S4分別為四面體四個面的面積,r為四面體內切球的半徑,設四面體的內切球的球心為O,則球心O到四個面的距離都是r)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題:函數
在定義域
上單調遞增;命題
:
在區間
上恒成立.
(1)如果命題為真命題,求實數
的值或取值范圍;
(2)命題“”為真命題,“
”為假命題,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知△ABC的面積為
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】三國時代吳國數學家趙爽所注《周髀算經》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用,化簡,得
.設勾股形中勾股比為
,若向弦圖內隨機拋擲
顆圖釘(大小忽略不計),則落在黃色圖形內的圖釘數大約為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“勾股定理”在西方被稱為“畢達哥拉斯定理”.三國時期,吳國的數學家趙爽創制了一幅“勾股圓方圖”,用數形結合的方法給出了勾股定理的詳細證明.如圖所示的“勾股圓方圖”中,四個相同的直角三角形與中間的小正方形拼成一個大正方形,若直角三角形中較小的銳角,現在向該正方形區域內隨機地投擲100枚飛鏢,則估計飛鏢落在區域1的枚數最有可能是( )
A.30B.40C.50D.60
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設O為坐標原點,動點M在橢圓C:上,該橢圓的左頂點A到直線
的距離為
.
求橢圓C的標準方程;
若線段MN平行于y軸,滿足
,動點P在直線
上,滿足
證明:過點N且垂直于OP的直線過橢圓C的右焦點F.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com