【題目】如圖,四面體OABC的三條棱OA,OB,OC兩兩垂直,OA=OB=2,OC=3,D為四面體OABC外一點.給出下列命題.
①不存在點D,使四面體ABCD有三個面是直角三角形
②不存在點D,使四面體ABCD是正三棱錐
③存在點D,使CD與AB垂直并且相等
④存在無數(shù)個點D,使點O在四面體ABCD的外接球面上
其中真命題的序號是
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:
的離心率為
,直線
:
與以原點為圓心、橢圓
的短半軸長為半徑的圓
相切.
(1)求橢圓的方程;
(2)矩形在
軸右側(cè),且頂點
、
在直線
上,頂點
、
在橢圓
上,若矩形
的面積為
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
(
為常數(shù)).
(1)若函數(shù)與函數(shù)
在
處有相同的切線,求實數(shù)
的值;
(2)若,且
,證明:
;
(3)若對任意,不等式恒
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合,其中
,由
中的元素構成兩個相應的集合:
,
.
其中是有序數(shù)對,集合
和
中的元素個數(shù)分別為
和
.
若對于任意的,總有
,則稱集合
具有性質(zhì)
.
(Ⅰ)檢驗集合與
是否具有性質(zhì)
并對其中具有性質(zhì)
的集合,寫出相應的集合
和
.
(Ⅱ)對任何具有性質(zhì)的集合
,證明
.
(Ⅲ)判斷和
的大小關系,并證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在點
處取得極小值-5,其導函數(shù)
的圖象經(jīng)過點(0,0),(2,0).
(1)求的值;
(2)求及函數(shù)
的表達式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓經(jīng)過點
、
,并且直線
平分圓
.
(1)求圓的方程;
(2)若過點,且斜率為
的直線
與圓
有兩個不同的交點
、
.
(i)求實數(shù)的取值范圍;
(ii)若,求
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com