【題目】定義在R上的函數f(x)滿足 ,
.
(1)求函數f(x)的解析式;
(2)求函數g(x)的單調區間;
(3)如果s、t、r滿足|s﹣r|≤|t﹣r|,那么稱s比t更靠近r.當a≥2且x≥1時,試比較 和ex﹣1+a哪個更靠近lnx,并說明理由.
【答案】
(1)解:f′(x)=f′(1)e2x﹣2+2x﹣2f(0),所以f′(1)=f′(1)+2﹣2f(0),即f(0)=1.又 ,
所以f′(1)=2e2,所以f(x)=e2x+x2﹣2x.
(2)解:∵f(x)=e2x﹣2x+x2,
∴ ,
∴g′(x)=ex﹣a.
①當a≤0時,g′(x)>0,函數f(x)在R上單調遞增;
②當a>0時,由g′(x)=ex﹣a=0得x=lna,
∴x∈(﹣∞,lna)時,g′(x)<0,g(x)單調遞減;x∈(lna,+∞)時,g′(x)>0,g(x)單調遞增.
綜上,當a≤0時,函數g(x)的單調遞增區間為(∞,∞);
當a>0時,函數g(x)的單調遞增區間為(lna,+∞),單調遞減區間為(﹣∞,lna).(8分)
(3)解:解:設 ,∵
,∴p(x)在x∈[1,+∞)上為減函數,又p(e)=0,∴當1≤x≤e時,p(x)≥0,當x>e時,p(x)<0.∵
,
,∴q′(x)在x∈[1,+∞)上為增函數,又q′(1)=0,∴x∈[1,+∞)時,q'(x)≥0,∴q(x)在x∈[1,+∞)上為增函數,∴q(x)≥q(1)=a+1>0.
①當1≤x≤e時, ,
設 ,則
,∴m(x)在x∈[1,+∞)上為減函數,
∴m(x)≤m(1)=e﹣1﹣a,
∵a≥2,∴m(x)<0,∴|p(x)|<|q(x)|,∴ 比ex﹣1+a更靠近lnx.
②當x>e時, ,
設n(x)=2lnx﹣ex﹣1﹣a,則 ,
,∴n′(x)在x>e時為減函數,
∴ ,∴n(x)在x>e時為減函數,∴n(x)<n(e)=2﹣a﹣ee﹣1<0,
∴|p(x)|<|q(x)|,∴ 比ex﹣1+a更靠近lnx.
綜上:在a≥2,x≥1時, 比ex﹣1+a更靠近lnx.
【解析】(1)求出函數的導數,利用賦值法,求出f′(1)=f′(1)+2﹣2f(0),得到f(0)=1.然后求解f′(1),即可求出函數的解析式.(2)求出函數的導數g′(x)=ex+a,結合a≥0,a<0,分求解函數的單調區間即可.(3)構造 ,通過函數的導數,判斷函數的單調性,結合當1≤x≤e時,當1≤x≤e時,推出|p(x)|<|q(x)|,說明
比ex﹣1+a更靠近lnx.當x>e時,通過作差,構造新函數,利用二次求導,判斷函數的單調性,證明
比ex﹣1+a更靠近lnx.
【考點精析】通過靈活運用利用導數研究函數的單調性,掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減即可以解答此題.
科目:高中數學 來源: 題型:
【題目】某校從參加高一年級期中考試的學生中隨機抽取60名學生,將其數學成績(均為整數)分成六段[40,50),[50,60)…[90,100]后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)求分數在[70,80)內的頻率,并補全這個頻率分布直方圖;
(2)用分層抽樣的方法在分數段為[60,80)的學生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至多有1人在分數段[70,80)的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在多面體SP﹣ABCD中,底面ABCD為矩形,AB=PC=1,AD=AS=2,且AS∥CP且AS⊥面ABCD,E為BC的中點.
(1)求證:AE∥面SPD;
(2)求三棱錐S-BPD的體積。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga(x+1),g(x)=loga(4﹣2x),a>0且a≠1.
(1)求函數y=f(x)﹣g(x)的定義域;
(2)求使不等式f(x)>g(x)成立的實數x的取值范圍;
(3)求函數y=2f(x)﹣g(x)﹣f(1)的零點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知全集U=R,集合A={x|1<x<4},B={x|x≤3m﹣4或x≥8+m}(m<6)
(1)若m=2,求A∩(UB)
(2)若A∩(UB)=,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com