日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
在△ABC中,a,b,c分別為內角A,B,C所對的邊,且滿足(2b-
3
c)cosA=
3
acosC

(1)求A的大小;
(2)現給出三個條件:①a=2;②B=45°;③c=
3
b
試從中選出兩個可以確定△ABC的條件,寫出你的選擇,并以此為依據求△ABC的面積(只需寫出一個選定方案即可)
分析:(1)化簡(2b-
3
c)cosA=
3
acosC
,利用正弦定理,推出關系式,然后求出A的值.
(2)選①③通過余弦定理,求出b,c,求出三角形的面積;選①②通過正弦定理求出的值,推出sinC的值,然后求出面積;選②③這樣的三角形不存在.
解答:解:(1)由2bcosA=
3
ccosA+
3
acosC代入正弦定理得:
2sinBcosA=
3
sinCcosA+
3
sinAcosC
即2sinBcosA=
3
sin(C+A)=
3
sinB≠0
∴cosA=
3
2
又0<A<π
∴A=
π
6

(2)選①③
由余弦定理:a2=b2+c2-2bccosA
∴b2+3b2-3b2=4∴b=2,c=2
3

∴S=
1
2
bcsinA=
3

選①②
由正弦定理得:
a
sinA
b
sinB
   ∴  b=
asinB
sinA
=2
2

又sinC=sin(A+B)=sinAcosB+cosAsinB=
2
+
6
4

∴S=
1
2
bssinC=
3
+1

選②③這樣的三角形不存在.
點評:本題是基礎題,考查正弦定理,余弦定理的應用,三角函數的化簡求值,考查計算能力,邏輯推理能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在△ABC中,∠A、∠B、∠C所對的邊長分別是a、b、c.滿足2acosC+ccosA=b.則sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,a<b<c,B=60°,面積為10
3
cm2,周長為20cm,求此三角形的各邊長.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對邊,已知
.
m
=(cos
C
2
,sin
C
2
)
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面積S=
3
3
2
,求邊c的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,A,B,C為三個內角,若cotA•cotB>1,則△ABC是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知y=f(x)函數的圖象是由y=sinx的圖象經過如下三步變換得到的:
①將y=sinx的圖象整體向左平移
π
6
個單位;
②將①中的圖象的縱坐標不變,橫坐標縮短為原來的
1
2

③將②中的圖象的橫坐標不變,縱坐標伸長為原來的2倍.
(1)求f(x)的周期和對稱軸;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美一区二 | 欧美日本免费一区二区三区 | 久久精品视频亚洲 | 久久久精品一区二区三区 | 亚洲一级免费观看 | 在线久草 | 有码一区| 国产精品主播 | 国产免费看黄网站 | 色综合天天综合网国产成人网 | 久久午夜影视 | 亚洲欧美视频 | 久草福利资源 | 久久久久久久久国产成人免费 | 99福利 | 精品国产乱码久久久久久1区2区 | 亚洲精品视频在线看 | 在线观看理论电影 | 你懂的在线网址 | 亚洲精品一区在线观看 | 国产精品不卡 | 精品少妇v888av | 国产精品视频久久久久久 | 欧美三级在线 | 欧美h视频| 久久精品这里热有精品 | 亚洲视频在线观看网址 | 国产成年人小视频 | 国产一在线 | 国产a√ | 神马九九 | 成人国产一区二区 | 久久r精品 | 精品一区二区三区三区 | 毛片入口 | www.中文字幕 | 国产精品视频区 | 国产激情的老师在线播放 | 韩日中文字幕 | 伊人精品视频在线观看 | 综合在线一区 |