【題目】如圖所示,在四棱錐中,底面四邊形ABCD是菱形,
是邊長為2的等邊三角形,
,
.
Ⅰ
求證:
底面ABCD;
Ⅱ
求直線CP與平面BDF所成角的大小;
Ⅲ
在線段PB上是否存在一點M,使得
平面BDF?如果存在,求
的值,如果不存在,請說明理由.
【答案】Ⅰ
見解析;
Ⅱ
Ⅲ
.
【解析】試題分析:
(Ⅰ) 由題意可得,從而可得
底面ABCD. (Ⅱ)建立空間直角坐標系,利用坐標法求解即可得到所求的線面角.
Ⅲ
根據坐標法求解探索性問題,假設存在點M滿足條件,并設且
,求得點點M坐標后,根據
與平面BDF的法向量垂直可得
,從而得到符合題意的點M存在.
試題解析:
Ⅰ
證明:∵四邊形ABCD是菱形,
∴O為中點
又,
∴,
又,
∴底面
Ⅱ
解:由底面ABCD是菱形可得
,又由
Ⅰ
可知
.
建立如圖所示的空間直角坐標系.
由是邊長為2的等邊三角形,
,可得
.
所以
∴
.
由已知可得,
設平面BDF的法向量為,
由,可得
,
令,則
.
設直線CP與平面BDF所成的角為,
則,
又,
∴.
∴直線CP與平面BDF所成角的大小為.
Ⅲ
解:假設存在點M滿足條件,且
,
則.
若使平面BDF,需且僅需
且
平面BDF,
由,解得
符合題意.
∴在線段PB上存在一點M,使得平面BDF,且
科目:高中數學 來源: 題型:
【題目】如圖,△ABC是直角三角形,∠ABC=90°,以AB為直徑的圓O交AC于點E,點D是BC邊的中點,連接OD交圓O于點M.
(1)求證:O、B、D、E四點共圓;
(2)求證:2DE2=DMAC+DMAB.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校課題組為了研究學生的數學成績和物理成績之間的關系,隨機抽取高二年級20名學生某次考試成績(百分制)如表所示:
序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
數學成績 | 95 | 75 | 80 | 94 | 92 | 65 | 67 | 84 | 98 | 71 | 67 | 93 | 64 | 78 | 77 | 90 | 57 | 83 | 72 | 83 |
物理成績 | 90 | 63 | 72 | 87 | 91 | 71 | 58 | 82 | 93 | 81 | 77 | 82 | 48 | 85 | 69 | 91 | 61 | 84 | 78 | 86 |
若數學成績90分(含90分)以上為優秀,物理成績85(含85分)以上為優秀.有多少把握認為學生的數學成績與物理成績之間有關系( )
A.99.5%
B.99.9%
C.97.5%
D.95%
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,直角梯形ABCD中,∠ABC=90°,AB=BC=2AD=4,點E、F分別是AB、CD的中點,點G在EF上,沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF,如圖2.
(1)當AG+GC最小時,求證:BD⊥CG;
(2)當2VB﹣ADGE=VD﹣GBCF時,求二面角D﹣BG﹣C平面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)滿足對任意的m,n都有f(m+n)=f(m)+f(n)-1,設g(x)=f(x)+(a>0,a≠1),g(ln2018)=-2015,則g(ln
)=______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直角梯形中,
,
,
,直角梯形
通過直角梯形
以直線
為軸旋轉得到,且使得平面
平面
.
為線段
的中點,
為線段
上的動點.
()求證:
.
()當點
滿足
時,求證:直線
平面
.
()當點
是線段
中點時,求直線
和平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A、B、C所對的邊分別為a、b、c,f (x)=sin(2x﹣A) (x∈R),函數f(x)的圖象關于點( ,0)對稱.
(1)當x∈(0, )時,求f (x)的值域;
(2)若a=7且sinB+sinC= ,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司采用招考方式引進人才,規定必須在,三個測試點中任意選取兩個進行測試,若在這兩個測試點都測試合格,則可參加面試,否則不被錄用,已知考生在每測試個點測試結果互不影響,若考生小李和小王一起前來參加招考,小李在測試點
測試合格的概率分別為
,小王在上述三個測試點測試合格的概率都是
.
(1)問小李選擇哪兩個測試點測試才能使得可以參加面試的可能性最大?請說明理由;
(2)假設小李選擇測試點進行測試,小王選擇測試點
進行測試,記
為兩人在各測試點測試合格的測試點個數之和,求隨機變量
的分布列及數學期望
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com