如圖,橢圓的中心為原點
,長軸在
軸上,離心率
,又橢圓
上的任一點到橢圓
的兩焦點的距離之和為
.
(1)求橢圓的標準方程;
(2)若平行于軸的直線
與橢圓
相交于不同的兩點
、
,過
、
兩點作圓心為
的圓,使橢圓
上的其余點均在圓
外.求
的面積
的最大值.
(1);(2)
.
解析試題分析:(1)根據題干條件求出、
的值,進而求出
的值,從而確定橢圓
的標準方程;(2)設點
的坐標為
,并設橢圓上任意一點
的坐標為
,求出
,根據題中條件得到點
的坐標使得
取得最小值,從而得出
,最后再求出
面積
的表達式,結合二次函數或基本不等式求出
的最大值.
試題解析:(1)設所求橢圓的標準方程為
,
由題意得,解的
,
,
,
所求橢圓
的標準方程為
;
(2)由橢圓的對稱性,可設,又設
是橢圓上任意一點,則
,
,
所以當時,
取最小值
,
又由題意得:是橢圓上任意一點到
的距離最小的點,
設,因此當
時,
取最小值,
又因,所以
,
由對稱性知,故
,所以
S,
所以當時,
的面積
取得最大值
.
考點:1.橢圓的方程;2.圓與橢圓的位置關系;3.二次函數
科目:高中數學 來源: 題型:解答題
已知動圓與圓
相切,且與圓
相內切,記圓心
的軌跡為曲線
;設
為曲線
上的一個不在
軸上的動點,
為坐標原點,過點
作
的平行線交曲線
于
兩個不同的點.
(1)求曲線的方程;
(2)試探究和
的比值能否為一個常數?若能,求出這個常數,若不能,請說明理由;
(3)記的面積為
,
的面積為
,令
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C: (a>b>0)的離心率為
,且橢圓C上一點與兩個焦點F1,F2構成的三角形的周長為2
+2.
(1)求橢圓C的方程;
(2)過右焦點F2作直線l 與橢圓C交于A,B兩點,設,若
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓:
(
)的右焦點為
,且橢圓
過點
.
(1)求橢圓的方程;
(2)設斜率為的直線
與橢圓
交于不同兩點
、
,以線段
為底邊作等腰三角形
,其中頂點
的坐標為
,求△
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖已知拋物線:
過點
,直線
交
于
,
兩點,過點
且平行于
軸的直線分別與直線
和
軸相交于點
,
.
(1)求的值;
(2)是否存在定點,當直線
過點
時,△
與△
的面積相等?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(理)已知點是平面直角坐標系上的一個動點,點
到直線
的距離等于點
到點
的距離的2倍.記動點
的軌跡為曲線
.
(1)求曲線的方程;
(2)斜率為的直線
與曲線
交于
兩個不同點,若直線
不過點
,設直線
的斜率分別為
,求
的數值;
(3)試問:是否存在一個定圓,與以動點
為圓心,以
為半徑的圓相內切?若存在,求出這個定圓的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓:
(
)的右焦點
,右頂點
,且
.
(1)求橢圓的標準方程;
(2)若動直線:
與橢圓
有且只有一個交點
,且與直線
交于點
,問:是否存在一個定點
,使得
.若存在,求出點
坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com