已知橢圓:
(
)的右焦點(diǎn)
,右頂點(diǎn)
,且
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若動(dòng)直線:
與橢圓
有且只有一個(gè)交點(diǎn)
,且與直線
交于點(diǎn)
,問:是否存在一個(gè)定點(diǎn)
,使得
.若存在,求出點(diǎn)
坐標(biāo);若不存在,說明理由.
(1);(2)詳見解析.
解析試題分析:(1)根據(jù)橢圓的右焦點(diǎn),右頂點(diǎn)
,且
,求出橢圓的幾何量,即可求橢圓
的標(biāo)準(zhǔn)方程;
(2)直線:
,代入橢圓方程,結(jié)合
,求出
的坐標(biāo)(參數(shù)表示),求出向量的坐標(biāo),利用
,進(jìn)行整理,如果為定值,那么不隨
的變化而變化,建立關(guān)于
的方程,即可得出結(jié)論.此題屬于中等題型,關(guān)鍵表示出P點(diǎn)坐標(biāo),轉(zhuǎn)化為過定點(diǎn)恒成立的形式.
試題解析:(1)由,
,
橢圓C的標(biāo)準(zhǔn)方程為. 4分
得:
, 6分
.
,
,即P
. 9分
M
.
又Q,
,
,
+
=
恒成立,
故,即
.
存在點(diǎn)M(1,0)適合題意. 12分
考點(diǎn):直線與圓錐的綜合問題
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的兩個(gè)焦點(diǎn)分別為
和
,離心率
.
(1)求橢圓的方程;
(2)若直線(
)與橢圓
交于不同的兩點(diǎn)
、
,且線段
的垂直平分線過定點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直線與拋物線
(常數(shù)
)相交于不同的兩點(diǎn)
、
,且
(
為定值),線段
的中點(diǎn)為
,與直線
平行的切線的切點(diǎn)為
(不與拋物線對稱軸平行或重合且與拋物線只有一個(gè)公共點(diǎn)的直線稱為拋物線的切線,這個(gè)公共點(diǎn)為切點(diǎn)).
(1)用、
表示出
點(diǎn)、
點(diǎn)的坐標(biāo),并證明
垂直于
軸;
(2)求的面積,證明
的面積與
、
無關(guān),只與
有關(guān);
(3)小張所在的興趣小組完成上面兩個(gè)小題后,小張連、
,再作與
、
平行的切線,切點(diǎn)分別為
、
,小張馬上寫出了
、
的面積,由此小張求出了直線
與拋物線圍成的面積,你認(rèn)為小張能做到嗎?請你說出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓的中心為原點(diǎn)
,長軸在
軸上,離心率
,又橢圓
上的任一點(diǎn)到橢圓
的兩焦點(diǎn)的距離之和為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若平行于軸的直線
與橢圓
相交于不同的兩點(diǎn)
、
,過
、
兩點(diǎn)作圓心為
的圓,使橢圓
上的其余點(diǎn)均在圓
外.求
的面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
巳知橢圓的離心率是
.
⑴若點(diǎn)P(2,1)在橢圓上,求橢圓的方程;
⑵若存在過點(diǎn)A(1,0)的直線,使點(diǎn)C(2,0)關(guān)于直線
的對稱點(diǎn)在橢圓上,求橢圓的焦距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率
,長軸的左右端點(diǎn)分別為
,
.
(1)求橢圓的方程;
(2)設(shè)動(dòng)直線與曲線
有且只有一個(gè)公共點(diǎn)
,且與直線
相交于點(diǎn)
.
求證:以為直徑的圓過定點(diǎn)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)已知定點(diǎn)、
,動(dòng)點(diǎn)N滿足
(O為坐標(biāo)原點(diǎn)),
,
,
,求點(diǎn)P的軌跡方程.
(2)如圖,已知橢圓的上、下頂點(diǎn)分別為
,點(diǎn)
在橢圓上,且異于點(diǎn)
,直線
與直線
分別交于點(diǎn)
,
(ⅰ)設(shè)直線的斜率分別為
、
,求證:
為定值;
(ⅱ)當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),以
為直徑的圓是否經(jīng)過定點(diǎn)?請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)A(1,0)及圓,C為圓B上任意一點(diǎn),求AC垂直平分線與線段BC的交點(diǎn)P的軌跡方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,橢圓C:=1(a>b>0)的右焦點(diǎn)為F(4m,0)(m>0,m為常數(shù)),離心率等于0.8,過焦點(diǎn)F、傾斜角為θ的直線l交橢圓C于M、N兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若θ=90°,,求實(shí)數(shù)m;
(3)試問的值是否與θ的大小無關(guān),并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com