【題目】選修4-4:坐標系與參數方程
在直角坐標系中,圓
的普通方程為
. 在以坐標原點為極點,
軸正半軸為極軸的極坐標系中,直線
的極坐標方程為
.
(Ⅰ) 寫出圓 的參數方程和直線
的直角坐標方程;
( Ⅱ ) 設直線 與
軸和
軸的交點分別為
,
為圓
上的任意一點,求
的取值范圍.
【答案】(1);
.
(2).
【解析】【試題分析】(I)利用圓心和半徑,寫出圓的參數方程,將圓的極坐標方程展開后化簡得直角坐標方程.(II)求得兩點的坐標, 設點
,代入向量
,利用三角函數的值域來求得取值范圍.
【試題解析】
(Ⅰ)圓的參數方程為
(
為參數).
直線的直角坐標方程為
.
(Ⅱ)由直線的方程
可得點
,點
.
設點,則
.
.
由(Ⅰ)知,則
.
因為,所以
.
【題型】解答題
【結束】
23
【題目】選修4-5:不等式選講
已知函數,
.
(Ⅰ)若對于任意,
都滿足
,求
的值;
(Ⅱ)若存在,使得
成立,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】某地區2010年至2016年農村居民家庭人均純收入y(單位:千元)的數據如下表:
年 份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關于t的回歸直線方程;
(2)利用(1)中的回歸方程,分析2010年至2016年該地區農村居民家庭人均純收入的變化情況,并預測該地區2018年農村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘估計公式分別
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中點.
(1)證明:CD⊥平面PAE;
(2)若直線PB與平面PAE所成的角和PB與平面ABCD所成的角相等,求四棱錐P﹣ABCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 =(cosωx﹣sinωx,sinωx),
=(﹣cosωx﹣sinωx,2
cosωx),設函數f(x)=
+λ(x∈R)的圖象關于直線x=π對稱,其中ω,λ為常數,且ω∈(
,1)
(1)求函數f(x)的最小正周期;
(2)若y=f(x)的圖象經過點( ,0)求函數f(x)在區間[0,
]上的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】五個人站成一排,求在下列條件下的不同排法種數:
(1)甲必須在排頭;
(2)甲、乙相鄰;
(3)甲不在排頭,并且乙不在排尾;
(4)其中甲、乙兩人自左向右從高到矮排列且互不相鄰
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖為某班35名學生的投籃成績(每人投一次)的條形統計圖,其中上面部分數據破損導致數據不完全。已知該班學生投籃成績的中位數是5,則根據統計圖,則下列說法錯誤的是( )
A. 3球以下(含3球)的人數為10
B. 4球以下(含4球)的人數為17
C. 5球以下(含5球)的人數無法確定
D. 5球的人數和6球的人數一樣多
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙、丙三人用擂臺賽形式進行訓練.每局兩人單打比賽,另一人當裁判.每一局的輸方去當下一局的裁判,而由原來的裁判向勝者挑戰.半天訓練結束時,發現甲共打局,乙共打
局,而丙共當裁判
局.那么整個比賽的第
局的輸方( )
A. 必是甲 B. 必是乙 C. 必是丙 D. 不能確定
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com