【題目】近年來,隨著網絡的普及和智能手機的更新換代,各種方便的
相繼出世,其功能也是五花八門.某大學為了調查在校大學生使用
的主要用途,隨機抽取了
名大學生進行調查,各主要用途與對應人數的結果統計如圖所示,現有如下說法:
①可以估計使用主要聽音樂的大學生人數多于主要看社區、新聞、資訊的大學生人數;
②可以估計不足的大學生使用
主要玩游戲;
③可以估計使用主要找人聊天的大學生超過總數的
.
其中正確的個數為( )
A.B.
C.
D.
科目:高中數學 來源: 題型:
【題目】已知函數常數
)滿足
.
(1)求出的值,并就常數
的不同取值討論函數
奇偶性;
(2)若在區間
上單調遞減,求
的最小值;
(3)在(2)的條件下,當取最小值時,證明:
恰有一個零點
且存在遞增的正整數數列
,使得
成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司租賃甲、乙兩種設備生產A,B兩類產品,甲種設備每天能生產A類產品5件和B類產品10件,乙種設備每天能生產A類產品6件和B類產品20件.已知設備甲每天的租賃費為200元,設備乙每天的租賃費為300元,現該公司至少要生產A類產品50件,B類產品140件,所需租賃費最少為__________元.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex+e-x,其中e是自然對數的底數.
(1)證明:f(x)是R上的偶函數;
(2)若關于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求實數m的取值范圍;
(3)已知正數a滿足:存在x0∈[1,+∞),使得f(x0)<a(-+3x0)成立.試比較ea-1與ae-1的大小,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知平面直角坐標系中,直線
的參數方程為
(
為參數).以原點
為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
,且直線
與曲線
交于
、
兩點.
(1)求實數的取值范圍;
(2)若,點
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,圓柱的軸截面是邊長為2的正方形,點P是圓弧
上的一動點(不與
重合),點Q是圓弧
的中點,且點
在平面
的兩側.
(1)證明:平面平面
;
(2)設點P在平面上的射影為點O,點
分別是
和
的重心,當三棱錐
體積最大時,回答下列問題.
(i)證明:平面
;
(ii)求三棱錐的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( )
A.在頻率分布直方圖中,眾數左邊和右邊的直方圖的面積相等;
B.為調查高三年級的240名學生完成作業所需的時間,由教務處對高三年級的學生進行編號,從001到240抽取學號最后一位為3的學生進行調查,則這種抽樣方法為分層抽樣;
C.“”是“
”的必要不充分條件;
D.命題:“
,使得
”的否定為:“
,均有
”.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com