【題目】自駕游從地到
地有甲乙兩條線路,甲線路是
,乙線是
,其中
段、
段、
段都是易堵車路段.假設這三條路段堵車與否相互獨立.這三條路段的堵車概率及平均堵車時間如表1所示.經調查發現,堵車概率
在
上變化,
在
上變化.在不堵車的情況下.走線路甲需汽油費500元,走線路乙需汽油費545元.而每堵車1小時,需多花汽油費20元.路政局為了估計
段平均堵車時間,調查了100名走甲線路的司機,得到表2數據.
CD段 | EF段 | GH段 | |||
堵車概率 | |||||
平均堵車時間 (單位:小時) | 2 | 1 | |||
(表1) | |||||
堵車時間(單位:小時) | 頻數 | ||||
8 | |||||
6 | |||||
38 | |||||
24 | |||||
24 | |||||
(表2) | |||||
(1)求段平均堵車時間
的值.
(2)若只考慮所花汽油費期望值的大小,為了節約,求選擇走甲線路的概率.
(3)在(2)的條件下,某4名司機中走甲線路的人數記為X,求X的數學期望。
科目:高中數學 來源: 題型:
【題目】已知動圓M過定點P(1,0),且與直線x=﹣1相切.
(1)求動圓圓心M的軌跡C的方程;
(2)設A、B是軌跡C上異于原點O的兩點,且 =0,求證:直線AB過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設集合A={x|ax2+bx+1=0}(a∈R,b∈R),集合B={﹣1,1}.
(1)若BA,求實數a的值;
(2)若A∩B≠,求a2﹣b2+2a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={x|x2﹣3x<0},B={x|(x+2)(4﹣x)≥0},C={x|a<x≤a+1}.
(1)求A∩B;
(2)若B∪C=B,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】假設關于某設備使用年限x(年)和所支出的維修費用y(萬元)有如下統計資料:
2 | 3 | 4 | 5 | 6 | |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由資料知,y對x呈線性相關關系,試求:
(Ⅰ)請畫出上表數據的散點圖;
(Ⅱ)請根據上表提供的數據,求出y關于x的線性回歸方程=bx+
;
(Ⅲ)估計使用年限為10年時,維修費用約是多少?
(參考數據:2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一組數據的平均數是2.8,方差是3.6,若將這組數據中的每一個數據都加上60,得到一組新數據,則所得新數據的平均數和方差分別是( 。
A.57.2,3.6
B.57.2,56.4
C.62.8,63.6
D.62.8,3.6
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,
分別為橢圓
:
的左、右焦點,
為短軸的一個端點,
是橢圓
上的一點,滿足
,且
的周長為
.
(1)求橢圓的方程;
(2)設點是線段
上的一點,過點
且與
軸不垂直的直線
交橢圓
于
兩點,若
是以
為頂點的等腰三角形,求點
到直線
距離的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著移動互聯網的快速發展,基于互聯網的共享單車應運而生.某市場研究人員為了了解共享單車運營公司M的經營狀況,對該公司最近六個月內的市場占有率進行了統計,并繪制了相應的折線圖.
(Ⅰ)由折線圖可以看出,可用線性回歸模型擬合月度市場占有率y與月份代碼x之間的關系.求y關于x的線性回歸方程,并預測M公司2017年4月份(即x=7時)的市場占有率;
(Ⅱ)為進一步擴大市場,公司擬再采購一批單車.現有采購成本分別為1000元/輛和1200元/輛的A、B兩款車型可供選擇,按規定每輛單車最多使用4年,但由于多種原因(如騎行頻率等)會導致車輛報廢年限各不相同.考慮到公司運營的經濟效益,該公司決定先對兩款車型的單車各100輛進行科學模擬測試,得到兩款單車使用壽命頻數表如下:
車型 | 1年 | 2年 | 3年 | 4年 | 總計 |
A | 20 | 35 | 35 | 10 | 100 |
B | 10 | 30 | 40 | 20 | 100 |
經測算,平均每輛單車每年可以帶來收入500元.不考慮除采購成本之外的其他成本,假設每輛單車的使用壽命都是整數年,且以頻率作為每輛單車使用壽命的概率.如果你是M公司的負責人,以每輛單車產生利潤的期望值為決策依據,你會選擇采購哪款車型?
參考數據:
(參考公式:回歸直線方程為,其中
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com