日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

設函數(shù)f(x)=x|x-a|+b.
(1)當a=1,b=1時,求所有使f(x)=x成立的x的值.
(2)若f(x)為奇函數(shù),求證:a2+b2=0;
(3)設常數(shù)b<2
2
-3
,且對任意x∈[0,1],f(x)<0恒成立,求實數(shù)a的取值范圍.
分析:(1)把a=1,b=1代入可得,函數(shù)f(x)=x|x-1|+1.解之即可;
(2)由奇函數(shù)的定義可得-x|-x-a|+b+x|x-a|+b=0,令x=0得b=0,令x=a得a=0,可得a2+b2=0;
(3)分類討論:由b=2
2
-3
<0,當x=0時,a取任意實數(shù)不等式恒成立.當0<x≤1時,f(x)<0恒成立,即x+
b
x
<a<x-
b
x
恒成立.由函數(shù)的區(qū)間最值可得.
解答:解:(1)當a=1,b=1時,函數(shù)f(x)=x|x-1|+1.由x|x-1|+1=x,可解得x=1或x=-1
(2)若f(x)為奇函數(shù),則對任意的x∈R都有f(-x)+f(x)=0恒成立,
即-x|-x-a|+b+x|x-a|+b=0,令x=0得b=0,令x=a得a=0,∴a2+b2=0
(3)由b=2
2
-3
<0,當x=0時,a取任意實數(shù)不等式恒成立.
當0<x≤1時,f(x)<0恒成立,即x+
b
x
<a<x-
b
x
恒成立.
令g(x)=x+
b
x
在0<x≤1上單調(diào)遞增,∴a>gmax(x)=g(1)=1+b,.
令h(x)=x-
b
x
,則h(x)在(0,
-b
上單調(diào)遞減,[
-b
,+∞)單調(diào)遞增
當b<-1時,h(x)=x-
b
x
在0<x≤1上單調(diào)遞減;
∴a<hmin(x)=h(1)=1-b,∴1+b<a<1-b.
而-1<b<2
2
-3
時,h(x)=x-
b
x
2
-b

∴a<hmin(x)=2
-b

∴1+b<a<2
-b
點評:本題考查函數(shù)的綜合應用,涉及函數(shù)的零點,奇偶性和單調(diào)性以及最值,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)的定義域為A,若存在非零實數(shù)t,使得對于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),則稱f(x)為C上的t低調(diào)函數(shù).如果定義域為[0,+∞)的函數(shù)f(x)=-|x-m2|+m2,且 f(x)為[0,+∞)上的10低調(diào)函數(shù),那么實數(shù)m的取值范圍是(  )
A、[-5,5]
B、[-
5
5
]
C、[-
10
10
]
D、[-
5
2
5
2
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)

②當x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點的橫坐標由小到大構(gòu)成一個無窮等差數(shù)列;
④關于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學 來源:徐州模擬 題型:解答題

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 成人国产精品视频 | 黄色网址进入 | 麻豆三级| 九九热这里只有精 | 久久久成人网 | 日本久久网| 中文字幕免费 | 国产一级在线观看 | 在线视频91 | 国产精品理论 | 日韩高清一区二区 | 天天干天天添 | 美日韩精品视频 | 99热在线观看 | 天天插天天操 | 国产精品一区二区久久久久 | 激情99 | 久久国产精品一区二区 | 成人一区二区av | 中文字幕二区 | 国产69久久 | 国产精品一区二区三区在线 | 涩涩亚洲| 一区在线观看 | 91精品国产色综合久久不卡98 | 91精产国品一二三区在线观看 | 精品视频一区二区 | av免费观看网站 | 成人在线免费小视频 | 亚洲激情在线播放 | 91精品国产91久久久久久不卡 | 亚洲在线| 久久精品二区 | 欧美久久a | 国产αv在线| 在线视频一区二区 | 午夜小视频在线观看 | 超碰在线看 | 午夜午夜精品一区二区三区文 | 三级视频网站 | 亚洲一级在线 |