【題目】黨的十九大報告指出,在全面建成小康社會的決勝階段,讓貧困地區同全國人民共同進入全面小康社會是我們黨的莊嚴承諾.在“脫真貧、真脫貧”的過程中,精準扶貧助推社會公平顯得尤其重要.若某地區有100戶貧困戶,經過一年扶貧后,為了考查該地區的“精準扶貧”的成效該地區脫貧標準為“每戶人均年收入不少于4000元”
,現從該地區隨機抽取A、B兩個村莊,再從這兩個村莊的貧困戶中隨機抽取20戶,調查每戶的現人均年收入,繪制如圖所示的莖葉圖
單位:百元
.
(1)觀察莖葉圖中的數據,判斷哪個村莊扶貧成效較好?并說明理由;
(2)計劃對沒有脫貧的貧困戶進一步實行“精準扶貧”,下一年的資金投入方案如下:對人均年收入不高于2000元的貧困戶,每戶每年增加扶貧資金5000元;對人均年收入高于2000元但不高于3000元的貧困戶,每戶每年增加扶貧資金3000元;對人均年收入高于3000元但不高于4000元的貧困戶,每戶每年增加扶貧資金1000元;對已經脫貧的貧困戶不再增加扶貧資金投入.依據此方案,試估計下一年該地區共需要增加扶貧資金多少元?
【答案】(1)B,理由見解析;(2)元.
【解析】
(1)通過莖葉圖,根據脫貧標準,判斷兩個村莊中數據集中的區間,由此判斷扶貧較好的村莊.或計算出兩個村莊貧困戶人均年收入的平均值,由此判斷出扶貧較好的村莊.
(2)根據分組的區間,計算出每組的頻率,乘以對應的扶貧資金,然后相加,求得下一年該地區共需要增加扶貧資金.
(1)村莊扶貧效果較好.理由一:由莖葉圖中的樣本數據可以看出,經過一年的扶貧之后,A村莊中的貧困戶人均年收入都集中在3000到5000之間,B村莊中的貧困戶人均年收入都集中在4000到6000之間,所以B村莊扶貧效果較好.理由二:由莖葉圖中的樣本數據可以看出,經過一年的扶貧之后,A村莊中的貧困戶人均年收入的平均值估計為3160元,B村莊中的貧困戶人均年收入的平均值估計為4870元,所以B村莊中扶貧效果較好.
答出其中一種理由即可
2
該地區人均年收入不高于2000元的貧困戶的頻率估計為
,高于2000元但不高于3000元的貧困戶的頻率估計為
,高于3000元但不高于4000元的貧困戶的頻率估計為
,所以該地區共需要增加的扶貧資金估計為
元.
科目:高中數學 來源: 題型:
【題目】每年六、七月份,我國長江中下游地區進入持續25天左右的梅雨季節,如圖是江南某地區年10年間梅雨季節的降雨量
單位:
的頻率分布直方圖,試用樣本頻率估計總體概率,解答下列問題:
假設每年的梅雨季節天氣相互獨立,求該地區未來三年里至少有兩年梅雨季節的降雨量超過350mm的概率.
老李在該地區承包了20畝土地種植楊梅,他過去種植的甲品種楊梅,平均每年的總利潤為28萬元
而乙品種楊梅的畝產量
畝
與降雨量之間的關系如下面統計表所示,又知乙品種楊梅的單位利潤為
元
,請你幫助老李分析,他來年應該種植哪個品種的楊梅可以使總利潤
萬元
的期望更大?并說明理由.
降雨量 | ||||
畝產量 | 500 | 700 | 600 | 400 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為弘揚中華民族優秀傳統文化,樹立正確的價值導向,落實立德樹人根本任務,某市組織30000名高中學生進行古典詩詞知識測試,根據男女學生人數比例,使用分層抽樣的方法從中隨機抽取100名學生,記錄他們的分數,整理所得頻率分布直方圖如圖:
(Ⅰ)規定成績不低于60分為及格,不低于85分為優秀,試估計此次測試的及格率及優秀率;
(Ⅱ)試估計此次測試學生成績的中位數;
(Ⅲ)已知樣本中有的男生分數不低于80分,且樣本中分數不低于80分的男女生人數相等,試估計參加本次測試30000名高中生中男生和女生的人數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐P-ABCD中,底面ABCD為直角梯形,平面ABCD,且
.
(1)求證:平面PBD;
(2)若PB與平面ABCD所成的角為,求二面角D-PC-B的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知平面直角坐標系中,直線l的參數方程為為參數
,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為
.
(1)求直線l的普通方程以及曲線C的參數方程;
(2)過曲線C上任意一點E作與直線l的夾角為的直線,交l于點F,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】自由購是一種通過自助結算購物的形式.某大型超市為調查顧客自由購的使用情況,隨機抽取了100人,調查結果整理如下:
20以下 | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] | 70以上 | |
使用人數 | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人數 | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(1)現隨機抽取1名顧客,試估計該顧客年齡在[30,50)且未使用自由購的概率;
(2)從被抽取的年齡在[50,70]使用的自由購顧客中,隨機抽取2人進一步了解情況,求這2人年齡都在[50,60)的概率;
(3)為鼓勵顧客使用自由購,該超市擬對使用自由購顧客贈送1個環保購物袋.若某日該超市預計有5000人購物,試估計該超市當天至少應準備多少個環保購物袋?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,函數
.
(1)求實數的值,使得
為奇函數;
(2)若關于的方程
有兩個不同實數解,求
的取值范圍;
(3)若關于的不等式
對任意
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市2013年發放汽車牌照12萬張,其中燃油型汽車牌照10萬張,電動型汽車2萬張,為了節能減排和控制總量,從2013年開始,每年電動型汽車牌照按50%增長,而燃油型汽車牌照每一年比上一年減少0.5萬張,同時規定一旦某年發放的牌照超過15萬張,以后每一年發放的電動車的牌照的數量維持在這一年的水平不變.
(1)記2013年為第一年,每年發放的燃油型汽車牌照數量構成數列,每年發放電動型汽車牌照數為構成數列
,完成下列表格,并寫出這兩個數列的通項公式;
(2)從2013年算起,累計各年發放的牌照數,哪一年開始超過200萬張?
|
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com