【題目】在平面直角坐標系中,圓
的參數方程為
,(t為參數),在以原點O為極點,
軸的非負半軸為極軸建立的極坐標系中,直線
的極坐標方程為
,
兩點的極坐標分別為.
(1)求圓的普通方程和直線
的直角坐標方程;
(2)點是圓
上任一點,求
面積的最小值.
【答案】(1),
;(2)4
【解析】試題分析:(1)由圓C的參數方程消去t得到圓C的普通方程,由直線l的極坐標方程,利用兩角和與差的余弦函數公式化簡,根據轉化為直角坐標方程即可;(2)將A與B的極坐標化為直角坐標,并求出|AB|的長,根據P在圓C上,設出P坐標,利用點到直線的距離公式表示出P到直線l的距離,利用余弦函數的值域確定出最小值,即可確定出三角形PAB面積的最小值.
試題解析:
(1)由消去參數t,得
,
所以圓C的普通方程為.
由,得
,換成直角坐標系為
,
所以直線l的直角坐標方程為
(2)化為直角坐標為
在直線l上,
并且,設P點的坐標為
,
則P點到直線l的距離為,
,所經
面積的最小值是
科目:高中數學 來源: 題型:
【題目】已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)當m=-1時,求A∪B;
(2)若AB,求實數m的取值范圍;
(3)若A∩B=,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個化肥廠生產甲種混合肥料1車皮、乙種混合肥料1車皮所需要的主要原料如表:
原料 | 磷酸鹽(單位:噸) | 硝酸鹽(單位:噸) |
甲 | 4 | 20 |
乙 | 2 | 20 |
現庫存磷酸鹽8噸、硝酸鹽60噸,計劃在此基礎上生產若干車皮的甲、乙兩種混合肥料.
(1)設x,y分別表示計劃生產甲、乙兩種肥料的車皮數,試列出x,y滿足的數學關系式,并畫出相應的平面區域;
(2)若生產1車皮甲種肥料,利潤為3萬元;生產1車皮乙種肥料,利潤為2萬元.那么分別生產甲、乙兩種肥料多少車皮,能夠產生最大利潤?最大利潤是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知由正數組成的等比數列{an}中,公比q="2," a1·a2·a3·…·a30=245, 則a1·a4·a7·…·a28= ( )
A.25
B.210
C.215
D.220
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在各項均為正數的等比數列{an}中,a1=2,且2a1 , a3 , 3a2成等差數列.
(Ⅰ) 求等比數列{an}的通項公式;
(Ⅱ) 若數列{bn}滿足bn=11﹣2log2an , 求數列{bn}的前n項和Tn的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,A,B,C的坐標分別為(﹣ ,0),(
,0),(m,n),G,O′,H分別為△ABC的重心,外心,垂心.
(1)寫出重心G的坐標;
(2)求外心O′,垂心H的坐標;
(3)求證:G,H,O′三點共線,且滿足|GH|=2|OG′|.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com