【題目】如圖,已知F為拋物線y2=4x的焦點,點A,B,C在該拋物線上,其中A,C關于x軸對稱(A在第一象限),且直線BC經過點F.
(1)若△ABC的重心為G( ),求直線AB的方程;
(2)設S△ABO=S1 , S△CFO=S2 , 其中O為坐標原點,求S12+S22的最小值.
【答案】
(1)解:設A(x1,y1),B(x2,y2),C(x1,﹣y1),
則△ABC的重心坐標為G( ,
),
由題意可得2x1+x2= ,且y2=4,
由y22=4x2,y12=4x1,
可得x2=4,y2=4,和x1= ,y1=1,
直線AB的斜率k= =
,
即有直線AB的方程為4x﹣5y+4=0;
(2)解:設A(x1,y1),B(x2,y2),C(x1,﹣y1),
設直線BC:x=my+1,代入拋物線方程y2=4x,可得
y2﹣4my﹣4=0,可得﹣y1y2=﹣4,即y1y2=4,
再設直線AB:y=kx+n,代入拋物線方程,可得
ky2﹣4y+4n=0,y1y2= =4,即n=k,
則有直線AB:y=k(x+1),即有直線AB恒過定點E(﹣1,0),
則S△ABO= |OE||y2﹣y1|=
|y2﹣y1|,
S△CFO= |OF||y1|=
|y1|,
即有S12+S22= (y2﹣y1)2+
y12=
=
(2y12+
﹣8)
≥ (2
﹣8)=2
﹣2.
即有S12+S22的最小值為2 ,y2=
【解析】(1)設A(x1 , y1),B(x2 , y2),C(x1 , ﹣y1),運用三角形的重心坐標公式和拋物線方程,即可求得A,B的坐標,進而得到直線方程;(2)通過直線BC,AB的方程和拋物線方程,運用韋達定理,可得恒過定點(﹣1,0),即有S△ABO= |OE||y2﹣y1|=
|y2﹣y1|,S△CFO=
|OF||y1|=
|y1|,y1y2=4,再由基本不等式計算即可得到最小值.
科目:高中數學 來源: 題型:
【題目】;給定函數① ,②
,③y=|x﹣1|,④y=2x+1 , 其中在區間(0,1)上單調遞減的函數序號是( )
A.①②
B.②③
C.③④
D.①④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一直線l過直線l1:3x﹣y=3和直線l2:x﹣2y=2的交點P,且與直線l3:x﹣y+1=0垂直.
(1)求直線l的方程;
(2)若直線l與圓心在x正半軸上的半徑為 的圓C相切,求圓C的標準方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓 的左、右焦點分別為F1 , F2 , 離心率為e,過F2的直線與橢圓的交于A,B兩點,若△F1AB是以A為頂點的等腰直角三角形,則e2=( )
A.3﹣2
B.5﹣3
C.9﹣6
D.6﹣4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知一四棱錐P﹣ABCD的三視圖如圖所示,E是側棱PC上的動點.
(Ⅰ)求四棱錐P﹣ABCD的體積.
(Ⅱ)若點E為PC的中點,AC∩BD=O,求證:EO∥平面PAD;
(Ⅲ)是否不論點E在何位置,都有BD⊥AE?證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設定義在R上的函數f(x)是最小正周期2π的偶函數,f′(x)是函數f(x)的導函數,當x∈[0,π]時,0<f(x)<1;當x∈(0,π),且x≠ 時,(x﹣
)f′(x)>0,則函數y=f(x)﹣sinx在[﹣2π,2π]上的零點個數為( )
A.2
B.4
C.5
D.8
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數g(x)=ax2﹣2ax+1+b(a≠0,b<1),在區間[2,3]上有最大值4,最小值1,設f(x)= .
(1)求a,b的值;
(2)不等式f(2x)﹣k2x≥0在x∈[﹣1,1]上恒成立,求實數k的取值范圍;
(3)方程f(|2x﹣1|)+k( ﹣3)有三個不同的實數解,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+2bx+c,且f(1)=f(3)=﹣1.設a>0,將函數f(x)的圖象先向右平移a個單位長度,再向下平移a2個單位長度,得到函數g(x)的圖象. (Ⅰ)若函數g(x)有兩個零點x1 , x2 , 且x1<4<x2 , 求實數a的取值范圍;
(Ⅱ)設連續函數在區間[m,n]上的值域為[λ,μ],若有 ,則稱該函數為“陡峭函數”.若函數g(x)在區間[a,2a]上為“陡峭函數”,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖:四棱錐P﹣ABCD中,底面ABCD是平行四邊形,且AC=BD,PA⊥底面ABCD,PA=AB=1, ,點F是PB的中點,點E在邊BC上移動.
(1)證明:當點E在邊BC上移動時,總有EF⊥AF;
(2)當CE等于何值時,PA與平面PDE所成角的大小為45°.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com