日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
如圖,在梯形ABCD中,AB∥CD,AB=a,CD=b(a>b).若EF∥AB,EF到CD與AB的距離之比為m:n,則可推算出:EF=
ma+nb
m+n
,用類比的方法,推想出下列問題的結果,在上面的梯形ABCD中,延長梯形的兩腰AD和BC交于O點,設△OAB,△OCD的面積分別為S1,S2,EF∥AB,,且EF到CD與AB的距離之比為m:n,則△OEF的面積S0與S1,S2的關系是(  )
分析:在平面幾何中的進行幾何性質類比推理時,我們常用的思路是:由平面幾何中線段的性質,類比推理平面幾何中面積的性質;故由:EF=
ma+nb
m+n
,類比到S0與S1,S2的關系是:
S0
=
m
S1
+n
S2
m+n
解答:解:在平面幾何中類比幾何性質時,
一般為:由平面幾何點的性質,類比推理線的性質;
由平面幾何中線段的性質,類比推理空間幾何中面積的性質;
故由:“EF=
ma+nb
m+n
”,
類比到關于△OEF的面積S0與S1,S2的結論是:
S0
=
m
S1
+n
S2
m+n

故選C.
點評:本題考查的知識點是類比推理,類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質去推測另一類事物的性質,得出一個明確的命題(猜想).
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=a,.∠ABC=60°,平面ACFE⊥平面ABCD,四邊形ACFE是矩形,AE=a,點M在線段EF上.
(1)求證:BC⊥平面ACFE;
(2)當EM為何值時,AM∥平面BDF?證明你的結論;
(3)求二面角B-EF-D的平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,CF=1.
(Ⅰ)求證:BC⊥平面ACFE;
(Ⅱ)點M在線段EF上運動,設平面MAB與平面FCB所成二面角的平面角為θ(θ≤90°),試求cosθ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在梯形ABCD中,AD∥BC,BD與AC相交于O,過O的直線分別交AB、CD于E、F,且EF∥BC,若AD=12,BC=20,則EF=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在梯形ABCD中,對角線AC和BD交于點O,E、F分別是AC和BD的中點,分別寫出
(1)圖中與
EF
CO
共線的向量;
(2)與
EA
相等的向量.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在梯形△ABCD中,AB∥CD,AD=DC-=CB=1,么ABC-60.,四邊形ACFE為矩形,平面ACFE上平面ABCD,CF=1.
(I)求證:BC⊥平面ACFE;
(II)若M為線段EF的中點,設平面MAB與平面FCB所成二面角的平面角為θ(θ≤90°),求cosθ.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美一区二区三区国产精品 | 国产精品中文字幕在线观看 | 日日骚视频 | 色欧美视频 | 欧美一级免费 | 99久久精品国产一区二区成人 | 狠狠操麻豆 | 免费的靠逼视频 | 午夜妇女aaaa区片 | 国产精品视频 | 欧美偷偷操| 中文字幕一区二区三区乱码图片 | 11一12免费毛片 | www.av在线 | 中文字幕在线永久 | 涩涩视频在线看 | 丝袜+亚洲+另类+欧美+变态 | 国产亚洲久久 | 日韩一区二区精品视频 | 日韩精品免费在线 | 亚洲精品免费看 | 国产片一区二区三区 | 中文字幕精品三级久久久 | 黄色免费在线观看 | 久久久久久影院 | 成人黄色在线视频 | 亚洲一区久久 | 亚洲福利在线播放 | 91精品国产aⅴ | 国产精品久久久久桃色tv | 国产一区二区在线不卡 | 涩涩视频网站在线观看 | 在线观看91 | 欧美激情久久久 | 午夜影院普通用户体验区 | 欧美在线视频一区二区 | 亚洲一区二区三区高清 | 午夜精品一区二区三区在线观看 | 久久色网 | 欧美在线观看黄 | 四虎最新紧急更新地址 |