【題目】已知函數y=x+有如下性質:如果常數t>0,那么該函數在(0,
]上是減函數,在[
,+∞)上是增函數.
(1)已知f(x)=,x∈[0,1],利用上述性質,求函數f(x)的單調區間和值域;
(2)對于(1)中的函數f(x)和函數g(x)=-x-2a,若對任意x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實數a的值.
【答案】(1) [-4,-3] ;(2) a=
【解析】試題分析:(1)f(x)==
,換元后
結合所給性質易得所求;(2)對任意x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立等價于f(x)的值域是g(x)的值域的子集.
試題解析:
(1)y=f(x)==
,
設u=2x+1,x∈[0,1],1≤u≤3,
則y=u+-8,u∈[1,3].
由已知性質得,當1≤u≤2,即0≤x≤時,f(x)單調遞減;
所以減區間為[0, ];
當2≤u≤3,即≤x≤1時,f(x)單調遞增;
所以增區間為[,1];
由f(0)=-3,f()=-4,f(1)=-
,
得f(x)的值域為[-4,-3].
(2)g(x)=-x-2a為減函數,
故g(x)∈[-1-2a,-2a],x∈[0,1].
由題意,f(x)的值域是g(x)的值域的子集,
∴ ∴a=
.
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(
為參數),以原點
為極點,
軸正半軸為極軸,建立極坐標系,直線
的極坐標方程為
.
(1)求曲線的普通方程與直線
的直角坐標方程;
(2)設為曲線
上的動點,求點
的直線
的距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱的底面是邊長為2的正三角形且側棱垂直于底面,側棱長是
,
是
的中點.
(1)求證: 平面
;
(2)求二面角的大小;
(3)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】國際奧委會將于2017年9月15日在秘魯利馬召開130次會議決定2024年第33屆奧運會舉辦地。目前德國漢堡、美國波士頓等申辦城市因市民擔心賽事費用超支而相繼退出。某機構為調查我國公民對申辦奧運會的態度,選了某小區的100位居民調查結果統計如下:
(1)根據已有數據,把表格數據填寫完整;
(2)能否在犯錯誤的概率不超過5%的前提下認為不同年齡與支持申辦奧運無關?
(3)已知在被調查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現從這5名女性中隨機抽取3人,求至多有1位教師的概率.
附: ,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
為常數,
=2.71828……是自然對數的底數),曲線
在點
處的切線與
軸平行.
(1)求的值;
(2)求的單調區間;
(3)設,其中
是
的導函數.證明:對任意
>0,
<
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在多面體ABCDEF中,底面ABCD是梯形,四邊形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=。
(1)求證:平面EBC⊥平面EBD;
(2)設M為線段EC上一點,且3EM=EC,試問在線段BC上是否存在一點T,使得MT∥平面BDE,若存在,試指出點T的位置;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com