日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=-x2+2ax+1-a在x∈[0,1]時有最大值2,求a的值.
a=2,或a=-1

試題分析:因為函數f(x)=-x2+2ax+1-a在x∈[0,1]時有最大值2,通過配方可知函數的對稱軸為x=a,且知該二次函數的開口向下,按分類討論,結合圖象就可用a將函數在[0,1]的最大值表示出來,再令其等于2就可解得a值.
試題解析:由f(x)=-x2+2ax+1-a=知其對稱軸為:,又因為x∈[0,1];
(1)當時,函數在[0,1]上是減函數,所以
(2)當時,函數在[0,1]上是增函數,所以
(3)當時,函數在[0,1]上的最大值為故舍去.
綜上可知:a=2,或a=-1
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

定義在R上的函數,當x>0時,,且對任意的ab∈R,有fa+b)=fa)·fb).
(1)求證:f(0)=1;
(2)求證:對任意的x∈R,恒有fx)>0;
(3)求證:fx)是R上的增函數;
(4)若fx)·f(2xx2)>1,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若f(x)=ax(a>0且a≠1)對于任意實數x、y都有(  )
A.f(xy)=f(x)•(y)B.f(xy)=f(x)+(y)C.f(x+y)=f(x)f(y)D.f(x+y)=f(x)+f(y)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數f(x)=
|lgx|,0<x≤10
-
1
2
x+6,x>10
,若a,b,c互不相等,且f(a)=f(b)=f(c),則abc的取值范圍是(  )
A.(1,10)B.(5,6)C.(10,12)D.(20,24)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若命題“恒成立”是真命題,則實數a的取值范圍是    .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若存在實數x∈[2,4],使不等式x2-2x-2-m<0成立,則m的取值范圍為             .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

函數的最小值為_________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(2014·孝感模擬)已知定義在區間[0,2]上的兩個函數f(x)和g(x),其中f(x)=-x2+2ax+1+a2,g(x)=x-+.
(1)求函數f(x)的最小值.
(2)對于?x1,x2∈[0,2],f(x1)>g(x2)恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

設函數f(x)的定義域為D,若存在非零實數n使得對于任意xM(MD),有xnD,且f(xn)≥f(x),則稱f(x)為M上的n高調函數.如果定義域為[-1,+∞)的函數f(x)=x2為[-1,+∞)上的k高調函數,那么實數k的取值范圍是________.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 精品欧美乱码久久久久久 | 久久久久久国产精品 | 久久久99精品免费观看 | 欧美亚洲视频 | 日韩精品一区在线 | 亚洲视频中文字幕 | 久久久精品一区二区 | 国产美女在线精品免费观看网址 | 美女黄网站视频免费 | 日韩精品专区在线影院重磅 | 日韩久草| 亚洲视频在线观看 | 欧洲一区| 成人一区二区三区在线观看 | 色伊人网 | 一级片在线观看网站 | 久久免费精品视频 | 国产精品一区免费 | 欧美日韩免费看 | 国产一级片在线 | 国产精品国产三级国产aⅴ无密码 | 日日噜噜噜夜夜爽爽狠狠小说 | 99精品视频一区二区三区 | 久久成年人视频 | 国产精品27页 | 亚洲aⅴ天堂av在线电影软件 | 可以免费观看的av | 日韩精品一区二区三区视频播放 | 欧美成人一级 | 狠狠久久婷婷 | 日本亚洲精品一区二区三区 | 青春草在线观看 | 国产精品一区二区三区在线播放 | 国产免费成人在线 | 国产日韩欧美在线观看 | 国产日日干| av一区在线观看 | 操操操日日日 | 成人在线观| 精品亚洲永久免费精品 | 欧美一级三级 |