【題目】已知α,β∈( ,π),且sinα+cosα=a,cos(β﹣α)=
.
(1)若a= ,求sinαcosα+tanα﹣
的值;
(2)若a= ,求sinβ的值.
科目:高中數學 來源: 題型:
【題目】某城市上年度電價為0.80元/千瓦時,年用電量為a千瓦時.本年度計劃將電價降到0.55元/千瓦時~0.75元/千瓦時之間,而居民用戶期望電價為0.40元/千瓦時(該市電力成本價為0.30元/千瓦時)經測算,下調電價后,該城市新增用電量與實際電價和用戶期望電價之差成反比,比例系數為0.2a.試問當地電價最低為多少時,可保證電力部門的收益比上年度至少增加20%.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某網站針對2014年中國好聲音歌手A,B,C三人進行網上投票,結果如下:
觀眾年齡 | 支持A | 支持B | 支持C |
20歲以下 | 200 | 400 | 800 |
20歲以上(含20歲) | 100 | 100 | 400 |
(1)在所有參與該活動的人中,用分層抽樣的方法抽取n人,其中有6人支持A,求n的值.
(2)在支持C的人中,用分層抽樣的方法抽取6人作為一個總體,從這6人中任意選取2人,求恰有1人在20歲以下的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數f(x)給出定義:
設f′(x)是函數y=f(x)的導數,f″(x)是函數f′(x)的導數,若方程f″(x)=0有實數解x0 , 則稱點(x0 , f(x0))為函數y=f(x)的“拐點”.
某同學經過探究發現:任何一個三次函數f(x)=ax3+bx2+cx+d(a≠0)都有“拐點”;任何一個三次函數都有對稱中心,且“拐點”就是對稱中心.給定函數 ,請你根據上面探究結果,計算
= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某少數民族的刺繡有著悠久的歷史,如圖(1),(2),(3),(4)為最簡單的四個圖案,這些圖案都是由小正方形構成,小正方形數越多刺繡越漂亮.現按同樣的規律刺繡(小正方形的擺放規律相同),設第n個圖形包含f(n)個小正方形.
(1)求出f(5)的值.
(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關系式,并根據你得到的關系式求出f(n)的表達式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com