【題目】已知數列{an}的前n項為和Sn,點(n,)在直線y=
x+
上.數列{bn}滿足bn+2-2bn+1+bn=0(nN*),且b3=11,前9項和為153.
(1)求數列{an},{bn}的通項公式;
(2)求數列的前
項和
(3)設nN*,f(n)=問是否存在mN*,使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,請說明理由.
【答案】(1),bn=3n+2.(2)
(3)11
【解析】試題分析:(1)由點在直線上,求得 ,利用
與
的關系求出
通項公式,由
得
是等差數列,再算出首項和公差,寫出
通項公式;(2)化簡
的表達式,采用錯位相減法求和;(3)分
為奇數和偶數,討論
是否成立.
試題解析:(Ⅰ)∵點(n,)在直線y=
x+
上,∴
=
n+
,即Sn=
n2+
n,所以
6,當
時,
n+5.且
6也適合,所以
∵bn+2-2bn+1+bn=0(nN*),∴bn+2-bn+1= bn+1-bn=…= b2-b1.∴數列{bn}是等差數列,∵b3=11,它的前9項和為153,設公差為d,則b1+2d=11,9b1+×d=153,解得b1=5,d=3.∴bn=3n+2.
(Ⅱ)令
則
(Ⅲ) nN*,f(n)==
當m為奇數時,m+15為偶數,則有3(m+15)+2=5(m+5),解得m=11
當m為偶數時,m+15為奇數.若f(m+15)=5f(m)成立, m+15+5=5(3m+2),此時不成立.
所以當m=11時,f(m+15)=5f(m).
科目:高中數學 來源: 題型:
【題目】已知拋物線,其焦點為
.
(1)若點,求以
為中點的拋物線的弦所在的直線方程;
(2)若互相垂直的直線都經過拋物線
的焦點
,且與拋物線相交于
兩點和
兩點,求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數的最小值為
,且
.
(1)求的解析式;
(2)若在區間
上不單調,求實數
的取值范圍;
(3)在區間上,
的圖象恒在
的圖象上方,試確定實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對某電子元件進行壽命追蹤調查,所得情況如右頻率分布直方圖.
(1)圖中縱坐標處刻度不清,根據圖表所提供的數據還原
;
(2)根據圖表的數據按分層抽樣,抽取個元件,壽命為
之間的應抽取幾個;
(3)從(2)中抽出的壽命落在之間的元件中任取
個元件,求事件“恰好有一個壽命為
,一個壽命為
”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】統計表明,某種型號的汽車在勻速行駛中每小時的耗油量(升)關于行駛速度
(千米/小時)的函數解析式可以表示為:
.已知甲、乙兩地相距100千米.
(Ⅰ)當汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?
(II)當汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2017年天貓五一活動結束后,某地區研究人員為了研究該地區在五一活動中消費超過3000元的人群的年齡狀況,隨機在當地消費超過3000元的群眾中抽取了500人作調查,所得概率分布直方圖如圖所示:記年齡在,
,
對應的小矩形的面積分別是
,且
.
(1)以頻率作為概率,若該地區五一消費超過3000元的有30000人,試估計該地區在五一活動中消費超過3000元且年齡在的人數;
(2)計算在五一活動中消費超過3000元的消費者的平均年齡;
(3)若按照分層抽樣,從年齡在,
的人群中共抽取7人,再從這7人中隨機抽取2人作深入調查,求至少有1人的年齡在
內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,
是兩條不同直線,
,
是兩個不同平面,則下列命題正確的是( )
A.若,
垂直于同一平面,則
與
平行
B.若,
平行于同一平面,則
與
平行
C.若,
不平行,則在
內不存在與
平行的直線
D.若,
不平行,則
與
不可能垂直于同一平面
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知圓的極坐標方程為
,直線
的參數方程為
(
為參數).若直線
與圓
相交于不同的兩點
,
.
(Ⅰ)寫出圓的直角坐標方程,并求圓心的坐標與半徑;
(Ⅱ)若弦長,求直線
的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的離心率
,圓
與直線
相切,
為坐標原點.
(1)求橢圓的方程;
(2)過點任作一直線
交橢圓
于
兩點,記
,若在線段
上取一點
,使得
,試判斷當直線
運動時,點
是否在某一定直一上運動?若是,請求出該定直線的方程;若不是,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com