【題目】已知函數.
(1)求函數f(x)的最小正周期及單調遞增區間;
(2)求f(x)在區間上的最大值和最小值及相應的x值;
【答案】(1);[
,
],k∈Z;(2)詳見解析
【解析】
(1)利用二倍角公式和輔助角公式化簡f(x)解析式,由正弦函數圖像的性質即可得函數周期和單調遞增區間.
(2)由正弦函數的性質可得f(x)最大值和最小值及相應的x值.
(1)∵f(x)=4sin3xcosx-2sinxcosx-cos4x
=sin2x×(1-cos2x)-sin2x-cos4x
=-sin4x-
cos4x
=-sin(4x+
),
∴函數f(x)的最小正周期T=.
∵由2kπ+≤4x+
≤2kπ+
,k∈Z,可得:
,k∈Z,
∴函數f(x)的單調遞增區間為:[,
],k∈Z;
(2)∵x∈[0,],
∴4x+,
∴sin(4x+)∈[-
,1],
∴f(x)=-sin(4x+
)∈[-
,
],
可得當x=時,f(x)在區間[0,
]上的最大值為
,
當x=時,取得最小值為
.
科目:高中數學 來源: 題型:
【題目】某重點中學100位學生在市統考中的理科綜合分數,以,
,
,
,
,
,
分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求理科綜合分數的眾數和中位數;
(3)在理科綜合分數為,
,
,
的四組學生中,用分層抽樣的方法抽取11名學生,則理科綜合分數在
的學生中應抽取多少人?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓滿足:①圓心在第一象限,截
軸所得弦長為2;②被
軸分成兩段圓弧,其弧長的比為
;③圓心到直線
的距離為
.
(Ⅰ)求圓的方程;
(Ⅱ)若點是直線
上的動點,過點
分別做圓
的兩條切線,切點分別為
,
,求證:直線
過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線l的參數方程為 (t為參數),在以直角坐標系的原點O為極點,x軸的正半軸為極軸的極坐標系中,曲線C的極坐標方程為ρ=
(1)求曲線C的直角坐標方程和直線l的普通方程;
(2)若直線l與曲線C相交于A,B兩點,求△AOB的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x),g(x)滿足關系g(x)=f(x)f(x+α),其中α是常數.
(1)設f(x)=cosx+sinx,,求g(x)的解析式;
(2)設計一個函數f(x)及一個α的值,使得;
(3)當f(x)=|sinx|+cosx,時,存在x1,x2∈R,對任意x∈R,g(x1)≤g(x)≤g(x2)恒成立,求|x1-x2|的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓 =1(a>b>0)的左焦點為F,過點F的直線交橢圓于A,B兩點.|AF|的最大值是M,|BF|的最小值是m,滿足Mm=
a2 .
(1)求該橢圓的離心率;
(2)設線段AB的中點為G,AB的垂直平分線與x軸和y軸分別交于D,E兩點,O是坐標原點.記△GFD的面積為S1 , △OED的面積為S2 , 求 的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱臺ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,
(1)求證:EF⊥平面ACFD;
(2)求二面角B﹣AD﹣F的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com