分析 (1)設AC交BD于O,連接EO,則由中位線定理可得PC∥OE,故而PC∥平面EBD;
(2)先證BC⊥平面PDC得出BC⊥DF,結合DF⊥PC得出DF⊥平面PBC,故而平面DEF⊥平面PCB.
解答 證明:(1)設AC交BD于O,連接EO,
在△PAC中,∵E是PA中點,O是AC中點.
∴EO∥PC.
又PC?平面EBD,EO?平面EBD,
∴PC∥平面EBD.
(2)∵PD⊥平面ABCD,BC?平面ABCD.
∴PD⊥BC.
又BC⊥DC,DC∩PD=D,PD?平面PDC,DC?平面PDC,
∴BC⊥平面PDC.又DF?平面PDC,
∴BC⊥DF.
又DF⊥PC,BC∩PC=C,BC?平面PCB,PC?平面PCB,
∴DF⊥平面PCB,
∵DF?平面DEF,
∴平面DEF⊥平面PCB.
點評 本題考查了線面平行,線面垂直的判定,面面垂直的判定,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{10}$ | B. | $\frac{3}{10}$ | C. | $\frac{7}{10}$ | D. | $\frac{9}{10}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ?x∈R,使得n<x2 | B. | ?x∈R,使得n≥x2 | C. | ?x∈R,使得n<x2 | D. | ?x∈R,使得n≤x2 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | |a|>|b| | B. | a2>ab | C. | $\frac{1}{a}>\frac{1}{b}$ | D. | $\frac{1}{a-b}>\frac{1}{a}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | y=x2-x | B. | y=x+2sin x | C. | y=x3+x | D. | y=tan x |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com