【題目】如圖,已知等邊中,
,
分別為
,
邊的中點,
為
的中點,
為
邊上一點,且
,將
沿
折到
的位置,使平面
平面
.
(Ⅰ)求證:平面平面
;
(Ⅱ)求二面角的余弦值.
【答案】詳見解析.
【解析】
試題分析:(1)首先根據已知條件可證出,再由面面垂直的性質定理并結合平面
平面
可得出
平面
,然后再由
和
可證得
,再在正
中易證得
平面
,最后由面面垂直的判定定理即可得出所證的結論;(2)首先建立空間直角坐標系,并正確寫出各點的空間坐標,然后由法向量的定義分別求出平面
和平面
的法向量,最后由公式
即可計算出所求的角的大小.
試題解析:(Ⅰ)因為,
為等邊
的
,
邊的中點,
所以是等邊三角形,且
.因為
是
的中點,所以
.
又由于平面平面
,
平面
,所以
平面
.
又平面
,所以
.因為
,所以
,所以
.
在正中知
,所以
.而
,所以
平面
.
又因為平面
,所以平面
平面
.
(Ⅱ)設等邊的邊長為4,取
中點
,連接
,由題設知
,由(Ⅰ)知
平面
,又
平面
,所以
,如圖建立空間直角坐標系
,則
,
,
,
,
.
設平面的一個法向量為
,則
由得
令
,則
.
平面的一個法向量為
,所以
,
顯然二面角是銳角.所以二面角
的余弦值為
.
科目:高中數學 來源: 題型:
【題目】
函數.
(1)當時,求函數
的定義域;
(2)若,判斷
的奇偶性;
(3)是否存在實數,使函數
在
遞增,并且最大值為1,若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】統計表明,某種型號的汽車在勻速行駛中每小時的耗油量(升)關于行駛速度
(千米/小時)的函數解析式可以表示為:
.已知甲、乙兩地相距100千米.
(Ⅰ)當汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?
(II)當汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,
是兩條不同直線,
,
是兩個不同平面,則下列命題正確的是( )
A.若,
垂直于同一平面,則
與
平行
B.若,
平行于同一平面,則
與
平行
C.若,
不平行,則在
內不存在與
平行的直線
D.若,
不平行,則
與
不可能垂直于同一平面
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知圓的極坐標方程為
,直線
的參數方程為
(
為參數).若直線
與圓
相交于不同的兩點
,
.
(Ⅰ)寫出圓的直角坐標方程,并求圓心的坐標與半徑;
(Ⅱ)若弦長,求直線
的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某制造廠商10月份生產了一批乒乓球,從中隨機抽取個進行檢查,測得每個球的直徑(單位:
),將數據進行分組,得到如下頻率分布表:
(1)求、
、
及
、
的值,并畫出頻率分布直方圖(結果保留兩位小數);
(2)已知標準乒乓球的直徑為,直徑誤差不超過
的為五星乒乓球,若這批乒乓球共有
個,試估計其中五星乒乓球的數目;
(3)統計方法中,同一組數據常用該組區間的中點值(例如區間的中點值是
)作為代表,估計這批乒乓球直徑的平均值和中位數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某制造廠商10月份生產了一批乒乓球,從中隨機抽取個進行檢查,測得每個球的直徑(單位:
),將數據進行分組,得到如下頻率分布表:
(1)求、
、
及
、
的值,并畫出頻率分布直方圖(結果保留兩位小數);
(2)已知標準乒乓球的直徑為,直徑誤差不超過
的為五星乒乓球,若這批乒乓球共有
個,試估計其中五星乒乓球的數目;
(3)統計方法中,同一組數據常用該組區間的中點值(例如區間的中點值是
)作為代表,估計這批乒乓球直徑的平均值和中位數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com