【題目】如圖所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面邊長為a,E是PC的中點.
(Ⅰ)求證:PA∥平面BDE;
(Ⅱ)平面PAC⊥平面BDE;
(Ⅲ)若二面角E-BD-C為30°,求四棱錐P-ABCD的體積.
【答案】(I)詳見解析;(II)詳見解析;(III).
【解析】
(Ⅰ)連接,證明
.然后證明
平面
(Ⅱ)證明,
,推出
平面
,然后證明平面
⊥平面
(Ⅲ)取中點
,連接
,說明
為二面角
的平面角,求出
,
,
.然后求解幾何體的體積
解:(Ⅰ)證明:連接OE,如圖所示.
∵O、E分別為AC、PC中點,
∴OE∥PA.
∵OE面BDE,PA
平面BDE,
∴PA∥平面BDE.
(Ⅱ)證明:∵PO⊥平面ABCD,∴PO⊥BD.
在正方形ABCD中,BD⊥AC,
又∵PO∩AC=O,∴BD⊥平面PAC.
又∵BD平面BDE,∴平面PAC⊥平面BDE.
(Ⅲ)取OC中點F,連接EF.
∵E為PC中點,
∴EF為△POC的中位線,∴EF∥PO.
又∵PO⊥平面ABCD,
∴EF⊥平面ABCD,
∵OF⊥BD,∴OE⊥BD.
∴∠EOF為二面角E-BD-C的平面角,
∴∠EOF=30°.
在Rt△OEF中,
OF=OC=
AC=
a,
∴EF=OFtan30°=a,∴OP=2EF=
a.
∴VP-ABCD=×a2×
a=
a3.
科目:高中數學 來源: 題型:
【題目】已知f.
(1)如果函數的單調遞減區間為
,求函數
的解析式;
(2)在(1)的條件下,求函數的圖象在點
處的切線方程;
(3)若不等式恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC⊥CB,點M和N分別是B1C1和BC的中點.
(1)求證:MB∥平面AC1N;
(2)求證:AC⊥MB.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】AC為對稱軸的拋物線的一部分,點B到邊AC的距離為2km,另外兩邊AC,BC的長度分別為8km,2 km.現欲在此地塊內建一形狀為直角梯形DECF的科技園區.
(1)求此曲邊三角形地塊的面積;
(2)求科技園區面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】綠色出行越來越受到社會的關注,越來越多的消費者對新能源汽車感興趣但是消費者比較關心的問題是汽車的續駛里程
某研究小組從汽車市場上隨機抽取20輛純電動汽車調查其續駛里程
單次充電后能行駛的最大里程
,被調查汽車的續駛里程全部介于50公里和300公里之間,將統計結果分成5組:
,繪制成如圖所示的頻率分布直方圖.
求直方圖中m的值;
求本次調查中續駛里程在
的車輛數;
若從續駛里程在
的車輛中隨機抽取2輛車,求其中恰有一輛車續駛里程在
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|2x﹣ |,其在區間[0,1]上單調遞增,則a的取值范圍為( )
A.[0,1]
B.[﹣1,0]
C.[﹣1,1]
D.[﹣ ,
]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某上市股票在30天內每股的交易價格(元)與時間
(天)組成有序數對
,點
落在圖中的兩條線段上;該股票在30天內的日交易量
(萬股)與時間
(天)的部分數據如下表所示,且
與
滿足一次函數關系,
第 | 4 | 10 | 16 | 22 |
| 36 | 30 | 24 | 18 |
那么在這30天中第幾天日交易額最大( )
A. 10 B. 15 C. 20 D. 25
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】邗江中學高二年級某班某小組共10人,利用寒假參加義工活動,已知參加義工活動次數為1,2,3的人數分別為3,3,4.現從這10人中選出2人作為該組代表參加座談會.
(1)記“選出2人參加義工活動的次數之和為4”為事件,求事件
發生的概率;
(2)設為選出2人參加義工活動次數之差的絕對值,求隨機變量
的分布列和數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com