【題目】已知橢圓的左、右焦點(diǎn)分別為
(
).點(diǎn)
在
上,
,△
的周長為
,面積為
.
(1)求的方程;
(2)過的直線
與
交于
兩點(diǎn),以
為直徑的圓與直線
相切,求直線
的方程.
【答案】(1)(2)
【解析】
(1)依題意知△的周長為
,得
,又由△
的面積
,求得
,得出
,聯(lián)立方程組,求得
的值,即可得到橢圓的方程;
(2)設(shè)直線的方程為
,
,聯(lián)立方程組,利用根與系數(shù)的關(guān)系,求得
,再由弦長公式得
,得出以
為直徑的圓的圓心坐標(biāo)與半徑,再利用圓
與直線
相切,解得
,即可得到答案.
(1)設(shè)橢圓,
依題意知△的周長為
,得
,…①
又因為,所以
,
所以△的面積
,
所以,即
…②,
聯(lián)立①②解得,則
,
所以的方程為
.
(2)當(dāng)直線斜率為0時,不滿足題意.
設(shè)直線的方程為
,
,
由消去
,得
,
從而,
所以
,
設(shè)以為直徑的圓的圓心
,半徑為
,則
,
又,
,
又因為圓與直線
相切,則
,即
,解得
.
所以直線的方程為
,即
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為
,過點(diǎn)
垂直于
軸的直線與拋物線
相交于
兩點(diǎn),拋物線
在
兩點(diǎn)處的切線及直線
所圍成的三角形面積為
.
(1)求拋物線的方程;
(2)設(shè)是拋物線
上異于原點(diǎn)
的兩個動點(diǎn),且滿足
,求
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2+x-6y+m=0與直線l:x+2y-3=0.
(1)若直線l與圓C沒有公共點(diǎn),求m的取值范圍;
(2)若直線l與圓C相交于P、Q兩點(diǎn),O為原點(diǎn),且OP⊥OQ,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(1)已知在區(qū)間
上單調(diào)遞減,在區(qū)間
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍.
(2)若對任意的,不等式
在
上恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,且過點(diǎn)
.
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)四邊形ABCD的頂點(diǎn)在橢圓上,且對角線AC,BD過原點(diǎn)O,設(shè),滿足
.
(i)試證的值為定值,并求出此定值;
(ii)試求四邊形ABCD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某新上市的電子產(chǎn)品舉行為期一個星期(7天)的促銷活動,規(guī)定購買該電子產(chǎn)品可免費(fèi)贈送禮品一份,隨著促銷活動的有效開展,第五天工作人員對前五天中參加活動的人數(shù)進(jìn)行統(tǒng)計,表示第
天參加該活動的人數(shù),得到統(tǒng)計表格如下:
1 | 2 | 3 | 4 | 5 | |
4 | 6 | 10 | 23 | 22 |
(1)若與
具有線性相關(guān)關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出
關(guān)于
的線性回歸方程
;
(2)預(yù)測該星期最后一天參加該活動的人數(shù)(按四舍五入取到整數(shù)).
參考公式:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某新上市的電子產(chǎn)品舉行為期一個星期(7天)的促銷活動,規(guī)定購買該電子產(chǎn)品可免費(fèi)贈送禮品一份,隨著促銷活動的有效開展,第五天工作人員對前五天中參加活動的人數(shù)進(jìn)行統(tǒng)計,y表示第x天參加該活動的人數(shù),得到統(tǒng)計表格如下,經(jīng)計算得.
x | 1 | 2 | 3 | 4 | 5 |
y | 4 | m | 10 | 23 | 22 |
(1)若y與x具有線性相關(guān)關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(2)預(yù)測該星期最后一天參加該活動的人數(shù)(按四舍五入取到整數(shù)).
參考公式:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代儒家提出的“六藝”指:禮樂射御書數(shù).某校國學(xué)社團(tuán)預(yù)在周六開展“六藝”課程講座活動,周六這天準(zhǔn)備排課六節(jié),每藝一節(jié),排課有如下要求:“樂”與“書”不能相鄰,“射”和“御”要相鄰,則針對“六藝”課程講座活動的不同排課順序共有( )
A.18種B.36種C.72種D.144種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三棱錐中,
與
都是邊長為2的等邊三角形,
是側(cè)棱
的中點(diǎn),過點(diǎn)
作平行于
、
的平面分別交棱
、
、
于點(diǎn)
、
、
.
(1)證明:四邊形為矩形;
(2)若平面平面
,求二面角
的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com