日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網(wǎng)如圖,在三棱錐P-ABC中,PA=PB,PA⊥PB,AB⊥BC,∠BAC=30°,平面PAB⊥平面ABC.
(Ⅰ)求證:PA⊥平面PBC;
(Ⅱ)求二面角P-AC-B的大。
(Ⅲ)求異面直線AB和PC所成角的大。
分析:(1)要證明PA⊥平面PBC,即證明PA與平面PBC中兩條相交的直線垂直,由已知平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,且BC⊥AB,根據(jù)面面垂直的性質(zhì)定理,我們易得BC⊥平面PAB.再結(jié)合PA⊥PB,我們易得結(jié)論.
(2)要求二面角P-AC-B的大小,我們要先求二面角P-AC-B的平面角,作PO⊥AB于點(diǎn)O,OM⊥AC于點(diǎn)M,連接PM.由平面PAB⊥平面ABC,則PO⊥平面ABC,根據(jù)三垂線定理得PM⊥AC,則∠PMO是二面角P-AC-B的平面角.解三角形PMO即可得到結(jié)果.
(3)要異面直線AB和PC所成角的大小,在底面ABC內(nèi)分別過A、C作BC、AB的平行線,交于點(diǎn)D,連接OC,OD,PD.則∠PCD是異面直線AB和PC所成的角或其補(bǔ)角.解三角形PCD即可得到答案.
解答:精英家教網(wǎng)解:(Ⅰ)證明:∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,
且BC⊥AB,∴BC⊥平面PAB.
∵PA?平面PAB,∴PA⊥BC.
又∵PA⊥PB,∴PA⊥平面PBC.
(Ⅱ)作PO⊥AB于點(diǎn)O,OM⊥AC于點(diǎn)M,連接PM.
∵平面PAB⊥平面ABC,∴PO⊥平面ABC,
根據(jù)三垂線定理得PM⊥AC,∴∠PMO是二面角P-AC-B的平面角.
設(shè)PA=PB=
6
,∵PA⊥PB,∴AB=2
3
,PO=BO=AO=
3

∵OM⊥AM,∠MAO=30°,∴OM=AO•sin30°=
AO
2
,∴tanPMO=
PO
OM
=
AO
OM
=2
,
即二面角P-AC-B的大小是arctan2.

(Ⅲ)在底面ABC內(nèi)分別過A、C作BC、AB的平行線,交于點(diǎn)D,精英家教網(wǎng)
連接OC,OD,PD.
則∠PCD是異面直線AB和PC所成的角或其補(bǔ)角.
∵AB⊥BC,∠BAC=30°,
∴BC=AB•tan30°=2,OC=
OB2+BC2
=
7

PC=
PO2+CO2
=
10

易知底面ABCD為矩形,從而OC=OD,PC=PD.
在△PCD中,cosPCD=
1
2
CD
PC
=
30
10

∴異面直線AB和PC所成角的大小為arccos
30
10
點(diǎn)評:求二面角的大小,一般先作出二面角的平面角.此題是利用二面角的平面角的定義作出∠PMO為二面角P-AC-B的平面角,通過解∠PMO所在的三角形求得∠PMO.其解題過程為:作∠PMO→證∠PMO是二面角的平面角→計(jì)算∠PMO,簡記為“作、證、算”.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐P-ABC中,PA、PB、PC兩兩垂直,且PA=3.PB=2,PC=1.設(shè)M是底面ABC內(nèi)一點(diǎn),定義f(M)=(m,n,p),其中m、n、p分別是三棱錐M-PAB、三棱錐M-PBC、三棱錐M-PCA的體積.若f(M)=(
1
2
,x,y),且
1
x
+
a
y
≥8恒成立,則正實(shí)數(shù)a的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,則當(dāng)△AEF的面積最大時,tanθ的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分別為AB、AC中點(diǎn).
(Ⅰ)求證:DE‖平面PBC;
(Ⅱ)求證:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一繩子從A點(diǎn)繞三棱錐側(cè)面一圈回到點(diǎn)A的最短距離是
3
,則PA=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,點(diǎn)D,E分別在棱
PB,PC上,且BC∥平面ADE
(I)求證:DE⊥平面PAC;
(Ⅱ)當(dāng)二面角A-DE-P為直二面角時,求多面體ABCED與PAED的體積比.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 亚洲久草视频 | 日本精品久久久一区二区三区 | 一区二区日韩在线观看 | 日韩欧美在线视频播放 | 亚洲嫩草| 欧美成视频 | 亚洲国产成人av好男人在线观看 | 欧美激情综合五月色丁香小说 | 日韩一区二区在线视频 | 国产精品女同一区二区 | 羞羞在线观看视频免费观看hd | 91在线视频一区 | 中文字幕亚洲不卡 | 午夜高清视频在线观看 | 免费观看一级特黄欧美大片 | 中文字幕视频在线 | 国产精品久久久久久久久久久久久久 | 亚洲乱码国产乱码精品精 | 亚洲成人自拍 | 天堂在线视频免费 | 国产一区在线免费观看 | 日韩福利在线 | 久久久久国产视频 | 欧美一区黄| 草草在线观看 | 91天天综合 | 超碰一区二区三区 | 日韩毛片在线观看 | 国产精品69毛片高清亚洲 | 国产日韩欧美一区二区在线观看 | 日韩久草 | 成人av观看| 国产精品二区三区 | 久久com | 夜夜草视频 | 国产综合视频在线观看 | 日韩欧美国产一区二区 | 乱轮一区 | 色欧美片视频在线观看 | 91精品综合久久久久久五月天 | 成人h动漫免费观看网站 |