【題目】在直角坐標(biāo)系中,圓
的方程為
,以坐標(biāo)原點
為極點,
軸的正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)求圓的極坐標(biāo)方程與直線
的直角坐標(biāo)方程;
(2)設(shè)直線與圓
相交于
,
兩點,求圓
在
,
處兩條切線的交點坐標(biāo).
【答案】(1)圓的極坐標(biāo)方程為
,直線
的直角坐標(biāo)方程為
;(2)
.
【解析】
(1)由題意結(jié)合直角坐標(biāo)方程與極坐標(biāo)方程的轉(zhuǎn)化公式可得圓的極坐標(biāo)方程;轉(zhuǎn)化直線
的極坐標(biāo)方程為
,再利用直角坐標(biāo)方程與極坐標(biāo)方程的轉(zhuǎn)化公式即可得直線
的直角坐標(biāo)方程;
(2)由題意聯(lián)立方程組可得,
的坐標(biāo),結(jié)合直線與圓相切的性質(zhì)、直線方程的求解即可得兩切線方程,聯(lián)立方程即可得解.
(1)圓的方程
可變?yōu)?/span>
,
所以圓的極坐標(biāo)方程為
即
;
直線的極坐標(biāo)方程
可變?yōu)?/span>
,
所以直線的直角坐標(biāo)方程為
即
;
(2)由題意聯(lián)立方程組,解得
或
,
不妨設(shè)點,
,設(shè)過
,
處的切線分別為
,
,
圓的圓心為
,半徑為
,
易得,
由直線的斜率
可得直線
的斜率
,
所以直線的方程為
即
,
由可得
,
所以圓在
,
處兩條切線的交點坐標(biāo)為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項和為
,
,若
是公差不為0的等差數(shù)列,且
.
(1)求數(shù)列的通項公式;
(2)證明:數(shù)列是等差數(shù)列;
(3)記,若存在
,
(
),使得
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】稠環(huán)芳香烴化合物中有不少是致癌物質(zhì),比如學(xué)生鐘愛的快餐油炸食品中會產(chǎn)生苯并芘,它是由一個苯環(huán)和一個芘分子結(jié)合而成的稠環(huán)芳香烴類化合物,長期食用會致癌.下面是一組稠環(huán)芳香烴的結(jié)構(gòu)簡式和分子式:
名稱 | 萘 | 蒽 | 并四苯 | … | 并n苯 |
結(jié)構(gòu)簡式 | … | … | |||
分子式 | … | … |
由此推斷并十苯的分子式為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一款小游戲的規(guī)則如下:每輪游戲要進行三次,每次游戲都需要從裝有大小相同的2個紅球,3個白球的袋中隨機摸出2個球,若摸出的“兩個都是紅球”出現(xiàn)3次獲得200分,若摸出“兩個都是紅球”出現(xiàn)1次或2次獲得20分,若摸出“兩個都是紅球”出現(xiàn)0次則扣除10分(即獲得分).
(1)設(shè)每輪游戲中出現(xiàn)“摸出兩個都是紅球”的次數(shù)為,求
的分布列;
(2)玩過這款游戲的許多人發(fā)現(xiàn),若干輪游戲后,與最初的分?jǐn)?shù)相比,分?jǐn)?shù)沒有增加反而減少了,請運用概率統(tǒng)計的相關(guān)知識分析解釋上述現(xiàn)象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元五世紀(jì),數(shù)學(xué)家祖沖之估計圓周率的值的范圍是:
,為紀(jì)念數(shù)學(xué)家祖沖之在圓周率研究上的成就,某教師在講授概率內(nèi)容時要求學(xué)生從小數(shù)點后的6位數(shù)字1,4,1,5,9,2中隨機選取兩個數(shù)字做為小數(shù)點后的前兩位(整數(shù)部分3不變),那么得到的數(shù)字大于3.14的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),
,是橢圓
的左,右焦點,直線
與橢圓相交于
,
兩點
(1)若線段的中點為
,求直線
的方程;
(2)若直線過橢圓
的左焦點
,
,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),以原點
為極點,
軸的非負半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)求直線與曲線
的普通方程;
(2)若直線與曲線
交于
、
兩點,點
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是偶函數(shù),且當(dāng)
時,
(1)當(dāng)時,求
的解析式;
(2)設(shè)函數(shù)在區(qū)間
上的最大值為
,試求
的表達式;
(3)若方程有四個不同的實根,且它們成等差數(shù)列,試探求
與
滿足的條件.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com