日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
我們規定:對于任意實數A,若存在數列{an}和實數x(x≠0),使得A=a1+a2x+a3x2+…anxn-1,則稱數A可以表示成x進制形式,簡記為A=
.
x~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2~(-1)(3)(-2)(1)
,則表示A是一個2進制形式的數,且A=-1+3×2+(-2)×22+1×23=5.
(I)已知m=(1-2x)(1+3x2)(其中x≠0),試將m表示成x進制的簡記形式;
(II)記bn=
.
2~(a1)(a2)(a3)…(an-1)(an)
(n∈N*)
,若{an}是等差數列,且滿足a1+a2=3,a3+a4=7,求bn=9217時n的值.
(I)由m=(1-2x)(1+3x2)=1-2x+3x2-6x3=
.
x~(1)(-2)(3)(-6)

(Ⅱ)∵{an}是等差數列,設公差為d,又a1+a2=3,a3+a4=7,
a1+a1+d=3
2a1+5d=7
,解得
a1=1
d=1

∴an=1+(n-1)×1=n.
bn=1+2×21+3×22+…+n×2n-1,
2bn=1×2+2×22+3×23+…+(n-1)×2n-1+n×2n
兩式相減得-bn=1+2+22+…+2n-1-n×2n
-bn=
2n-1
2-1
-n×2n
,
bn=(n-1)×2n+1
又bn=9217,∴(n-1)×2n+1=9217,解得n=10.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2008•奉賢區模擬)我們規定:對于任意實數A,若存在數列{an}和實數x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數A可以表示成x進制形式,簡記為:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,則表示A是一個2進制形式的數,且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0),試將m表示成x進制的簡記形式.
(2)若數列{an}滿足a1=2,ak+1=
1
1-ak
,k∈N*
bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*),是否存在實常數p和q,對于任意的n∈N*,bn=p•8n+q總成立?若存在,求出p和q;若不存在,說明理由.
(3)若常數t滿足t≠0且t>-1,dn=
.
t\~(
C
1
n
)(
C
2
n
)(
C
3
n
)…(
C
n-1
n
)(
C
n
n
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

科目:高中數學 來源:2008-2009學年度高三數學模擬試題分類匯編:數列 題型:044

我們規定:對于任意實數A,若存在數列{an}和實數x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數A可以表示成x進制形式,簡記為:

.如:,則表示A是一個2進制形式的數,且A=-1+3×2+(-2)×22+1×23=5.

(1)已知m=(1-2x)(1+3x2)(其中x≠0),試將m表示成x進制的簡記形式.

(2)若數列{an}滿足a1=2,

,是否存在實常數p和q,對于任意的n∈N*,bn=p·8n+q總成立?若存在,求出p和q;若不存在,說明理由.

(3)若常數t滿足t≠0且t>-1,,求

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

我們規定:對于任意實數A,若存在數列{an}和實數x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數A可以表示成x進制形式,簡記為:數學公式.如:數學公式,則表示A是一個2進制形式的數,且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0),試將m表示成x進制的簡記形式.
(2)若數列{an}滿足a1=2,數學公式,數學公式(n∈N*),是否存在實常數p和q,對于任意的n∈N*,bn=p•8n+q總成立?若存在,求出p和q;若不存在,說明理由.
(3)若常數t滿足t≠0且t>-1,數學公式,求數學公式

查看答案和解析>>

科目:高中數學 來源:奉賢區模擬 題型:解答題

我們規定:對于任意實數A,若存在數列{an}和實數x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數A可以表示成x進制形式,簡記為:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,則表示A是一個2進制形式的數,且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0),試將m表示成x進制的簡記形式.
(2)若數列{an}滿足a1=2,ak+1=
1
1-ak
,k∈N*
bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*),是否存在實常數p和q,對于任意的n∈N*,bn=p•8n+q總成立?若存在,求出p和q;若不存在,說明理由.
(3)若常數t滿足t≠0且t>-1,dn=
.
t\~(
C1n
)(
C2n
)(
C3n
)…(
Cn-1n
)(
Cnn
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

科目:高中數學 來源:2008年上海市奉賢區高三聯考數學試卷(理科)(解析版) 題型:解答題

我們規定:對于任意實數A,若存在數列{an}和實數x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數A可以表示成x進制形式,簡記為:.如:,則表示A是一個2進制形式的數,且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0),試將m表示成x進制的簡記形式.
(2)若數列{an}滿足a1=2,(n∈N*),是否存在實常數p和q,對于任意的n∈N*,bn=p•8n+q總成立?若存在,求出p和q;若不存在,說明理由.
(3)若常數t滿足t≠0且t>-1,,求

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久人人爽人人爽人人片av不 | 在线视频成人永久免费 | 国产三级在线 | 中文字幕一区二区在线观看 | 少妇偷人精品视频 | 99久久视频| 免费黄在线观看 | 欧洲一级视频 | 精品福利一区二区三区 | 日韩在线观看一区 | 狠狠躁夜夜躁人人爽视频 | 日韩免费一区 | 人人插人人干 | 久久久久久久免费 | 国产香蕉97碰碰久久人人九色 | 日韩av免费在线观看 | 神马久久久久久 | 一区高清 | 欧美国产日韩视频 | 网址av| 国产精品一区久久久久 | 国产伦精品一区二区三区四区视频 | 久热最新| 亚洲欧美日韩另类精品一区二区三区 | 天堂免费在线观看视频 | 精品成人| 国产在线a| 女男羞羞视频网站免费 | 成人v片 | 超碰青青草原 | 青青国产在线 | 久久99精品久久久久国产越南 | 一区不卡| 成人在线高清视频 | 亚洲精品久久久久久国产精华液 | 青青久| 国产精品久久久久久久久久久不卡 | 欧美在线影院 | 国产日韩精品视频 | 欧美成人一区二区三区片免费 | 干干干操操操 |