【題目】如圖,直三棱柱ABC﹣A′B′C′,∠BAC=90°,AB=AC=λAA′,點(diǎn)M,N分別為A′B和B′C′的中點(diǎn).
(1)證明:MN∥平面A′ACC′;
(2)若二面角A′﹣MN﹣C為直二面角,求λ的值.
【答案】(1)見(jiàn)解析(2)λ.
【解析】
(1)法一:連接AB′、AC′,根據(jù)M為AB′中點(diǎn),N為B′C′的中點(diǎn),在中可知MN∥AC′,又MN平面A′ACC′,所以MN∥平面A′ACC′;法二:取A′B′的中點(diǎn)P,連接MP、NP,根據(jù)兩條相交中位線(xiàn)易證明平面MPN∥平面A′ACC′,從而MN∥平面A′ACC′;
(2)以A為坐標(biāo)原點(diǎn),分別以直線(xiàn)AB、AC、AA′為x,y,z軸,建立直角坐標(biāo)系,寫(xiě)出點(diǎn)的坐標(biāo)即可求解.
(1)證明:法一:連接AB′、AC′,
由已知∠BAC=90°,AB=AC,
三棱柱ABC﹣A′B′C′為直三棱柱,
所以M為AB′中點(diǎn),
又因?yàn)?/span>N為B′C′的中點(diǎn),
所以MN∥AC′,
又MN平面A′ACC′,平面
,
因此MN∥平面A′ACC′;
法二:取A′B′的中點(diǎn)P,連接MP、NP,
M、N分別為A′B、B′C′的中點(diǎn),
所以MP∥AA′,平面
,
平面
,所以MP∥平面A′ACC′,
同理可得PN∥平面A′ACC′,
又MP∩NP=P,因此平面MPN∥平面A′ACC′,
而MN平面MPN,因此MN∥平面A′ACC′.
(2)以A為坐標(biāo)原點(diǎn),分別以直線(xiàn)AB、AC、AA′為x,y,z軸,建立直角坐標(biāo)系,如圖,
設(shè)AA′=1,則AB=AC=λ,于是A(0,0,0),B(λ,0,0),C(0,λ,0),A′(0,0,1),B′(λ,0,1),C′(0,λ,1).
所以M(),N(
),
設(shè)(x1,y1,z1)是平面A′MN的法向量,
,
,
由,得
,可取
,
設(shè)(x2,y2,z2)是平面MNC的法向量,
,
由,得
,可取
,
因?yàn)槎娼?/span>A'﹣MN﹣C為直二面角,
所以,即﹣3+(﹣1)×(﹣1)+λ2=0,解得λ
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求
的單調(diào)區(qū)間;
(2)求函數(shù)在上的最值;
(3)當(dāng)時(shí),若函數(shù)
恰有兩個(gè)不同的零點(diǎn)
,
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若是函數(shù)的極值點(diǎn),求
的值及函數(shù)
的極值;
(2)討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)列對(duì)任意的
,都有
,且
,則稱(chēng)數(shù)列
為“k級(jí)創(chuàng)新數(shù)列”.
(1)已知數(shù)列滿(mǎn)足
且
,試判斷數(shù)列
是否為“2級(jí)創(chuàng)新數(shù)列”,并說(shuō)明理由;
(2)已知正數(shù)數(shù)列為“k級(jí)創(chuàng)新數(shù)列”且
,若
,求數(shù)列
的前n項(xiàng)積
;
(3)設(shè),
是方程
的兩個(gè)實(shí)根
,令
,在(2)的條件下,記數(shù)列
的通項(xiàng)
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中
.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)使不等式對(duì)任意
,
恒成立時(shí)最大的
記為
,求當(dāng)
時(shí),
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).其中
.
(1)討論函數(shù)的單調(diào)性;
(2)函數(shù)在
處存在極值-1,且
時(shí),
恒成立,求實(shí)數(shù)
的最大整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,,設(shè)
的內(nèi)切圓分別與邊
相切于點(diǎn)
,已知
,記動(dòng)點(diǎn)
的軌跡為曲線(xiàn)
.
(1)求曲線(xiàn)的方程;
(2)過(guò)的直線(xiàn)與
軸正半軸交于點(diǎn)
,與曲線(xiàn)E交于點(diǎn)
軸,過(guò)
的另一直線(xiàn)與曲線(xiàn)
交于
兩點(diǎn),若
,求直線(xiàn)
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),曲線(xiàn)
在點(diǎn)
處的切線(xiàn)方程為
.
(Ⅰ)求,
的值;
(Ⅱ)當(dāng)時(shí),若
為整數(shù),且
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求證:函數(shù)在
內(nèi)單調(diào)遞增;
(2)記為函數(shù)
的反函數(shù).若關(guān)于
的方程
在
上有解,求
的取值范圍;
(3)若對(duì)于
恒成立,求
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com