(本小題滿分12分)如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,,E,F分別是BC, PC的中點.
(1)證明:AE⊥PD;
(2)若H為PD上的動點,EH與平面PAD所成最大角的正切值為,求二面角E—AF—C的余弦值.
(1)略
(2)
【解析】(Ⅰ)證明:由四邊形ABCD為菱形,∠ABC=60°,可得△ABC為正三角形.
因為 E為BC的中點,所以AE⊥BC.
又 BC∥AD,因此AE⊥AD.
因為PA⊥平面ABCD,AE平面ABCD,所以PA⊥AE.
而
PA平面PAD,AD
平面PAD 且PA∩AD=A,
所以
AE⊥平面PAD,又PD
平面PAD.
所以 AE⊥PD………4分
(Ⅱ)解:設AB=2,H為PD上任意一點,連接AH,EH.
由(Ⅰ)知 AE⊥平面PAD,
則∠EHA為EH與平面PAD所成的角.
在Rt△EAH中,AE=,
所以 當AH最短時,∠EHA最大,
即 當AH⊥PD時,∠EHA最大.
此時
tan∠EHA=
因此
AH=.又AD=2,所以∠ADH=45°,
所以 PA=2………6分
解法一:因為
PA⊥平面ABCD,PA平面PAC,
所以 平面PAC⊥平面ABCD.
過E作EO⊥AC于O,則EO⊥平面PAC,
過O作OS⊥AF于S,連接ES,則∠ESO為二面角E-AF-C的平面角,
在Rt△AOE中,EO=AE·sin30°=,AO=AE·cos30°=
,
又F是PC的中點,在Rt△ASO中,SO=AO·sin45°=,
又
在Rt△ESO中,cos∠ESO=
即所求二面角的余弦值為
……12分
解法二:由(Ⅰ)知AE,AD,AP兩兩垂直,以A為坐標原點,建立如圖所示的空間直角坐標系,又E、F分別為BC、PC的中點,所以
E、F分別為BC、PC的中點,所以
A(0,0,0),B(,-1,0),C(C,1,0),
D(0,2,0),P(0,0,2),E(,0,0),F(
),
所以
設平面AEF的一法向量為
![]() |
因此
![]() |
因為 BD⊥AC,BD⊥PA,PA∩AC=A,
所以 BD⊥平面AFC,
故
為平面AFC的一法向量.
又
=(
),
![]() |
因為 二面角E-AF-C為銳角,
所以所求二面角的余弦值為……12分
科目:高中數學 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業建設工程三類,這三類工程所含項目的個數分別占總數的、
、
.現有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分12分)
某民營企業生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com