【題目】如圖,四邊形是直角梯形,
平面
,
(1)求直線與平面
所成角的余弦;
(2)求平面和平面
所成角的余弦.
科目:高中數學 來源: 題型:
【題目】某校乒乓球隊有3名男同學A,B,C和3名女同學X,Y,Z,其年級情況如下表:
一年級 | 二年級 | 三年級 | |
男同學 | A | B | C |
女同學 | X | Y | Z |
現從這6名同學中隨機選出2人參加乒乓球比賽(每人被選到的可能性相同).
(1)用表中字母列舉出所有可能的結果;
(2)設M為事件“選出的2人來自不同年級且恰有1名男同學和1名女同學”,求事件M發生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某小學體育素質達標運動會上,對10名男生和10名女生在一分鐘跳繩的次數進行統計,得到如下所示莖葉圖:
(1)已知男生組中數據的中位數為125,女生組數據的平均數為124,求x,y的值;
(2)現從這20名學生中任意抽取一名男生和一名女生對他們進行訓練,記一分鐘內跳繩次數不低于115且不超過125的學生被選上的人數為X,求X的分布列和數學期望E(X).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下面有四個結論:
①若數列的前
項和為
(
為常數),則
為等差數列;
②若數列是常數列,數列
是等比數列,則數列
是等比數列;
③在等差數列中,若公差
,則此數列是遞減數列;
④在等比數列中,各項與公比都不能為.
其中正確的結論為__________(只填序號即可).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】三棱錐P﹣ABC中,底面△ABC滿足BA=BC, ,P在面ABC的射影為AC的中點,且該三棱錐的體積為
,當其外接球的表面積最小時,P到面ABC的距離為( )
A.2
B.3
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知α,β是兩個不同的平面,m,n分別是平面α與平面β之外的兩條不同直線,給出四個論斷:
①m⊥n;②α⊥β;③n⊥β;④m⊥α.
以其中三個論斷作為條件,余下一個論斷作為結論,寫出你認為正確的一個命題:____.(用序號表示)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,邊長為的正方形ADEF與梯形ABCD所在的平面互相垂直,其中AB∥CD,AB⊥BC,DC=BC=
AB=1,點M在線段EC上.
(Ⅰ)證明:平面BDM⊥平面ADEF;
(Ⅱ)判斷點M的位置,使得三棱錐B﹣CDM的體積為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知三棱錐O﹣ABC的側棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,E是OC的中點.
(1)求異面直線BE與AC所成角的余弦值;
(2)求直線BE和平面ABC的所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為常數,函數
.
(1)當時,求關于
的不等式
的解集;
(2)當時,若函數
在
上存在零點,求實數
的取值范圍;
(3)當時,對于給定的
,且
,
,證明:關于
的方程
在區間
內有一個實根.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com